File size: 3,806 Bytes
617d510
d63d827
d1e02d2
617d510
 
748a83f
617d510
c093cb0
 
36ec160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a6f9ef
617d510
 
 
 
 
 
 
7ccc2c1
617d510
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36ec160
 
 
 
 
 
 
6a6f9ef
617d510
 
 
 
 
36ec160
617d510
 
 
 
 
 
 
 
27817dc
617d510
 
 
 
 
 
 
 
6a6f9ef
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import numpy as np
import pandas as pd
import torch
from torch import nn
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer, BertForSequenceClassification
from sklearn import metrics
import streamlit as st

# Define models to be used
bert_path = "bert-base-uncased"
bert_tokenizer = AutoTokenizer.from_pretrained(bert_path)
bert_model = BertForSequenceClassification.from_pretrained(bert_path, num_labels=6)
tuned_model = model = torch.load("pytorch_bert_toxic.bin")

# Read and format data.
tweets_raw = pd.read_csv("test.csv", nrows=20)
labels_raw = pd.read_csv("test_labels.csv", nrows=20)

label_set = ["toxic", "severe_toxic", "obscene", "threat", "insult", "identity_hate"]
label_vector = labels_raw[label_set].values.tolist()

tweet_df = tweets_raw[["comment_text"]]
tweet_df["labels"] = label_vector

# User selects model for front-end.
option = st.selectbox("Select a text analysis model:", ("BERT", "Fine-tuned BERT"))
if option == "BERT":
    tokenizer = bert_tokenizer
    model = bert_model
else:
    tokenizer = bert_tokenizer
    model = tuned_model

# Dataset for loading tables into DataLoader
class ToxicityDataset(Dataset):
    def __init__(self, dataframe, tokenizer, max_len):
        self.tokenizer = tokenizer
        self.data = dataframe
        self.text = self.data.comment_text
        self.targets = self.data.labels
        self.max_len = max_len

    def __len__(self):
        return len(self.text)

    def __getitem__(self, index):
        text = str(self.text[index])
        text = " ".join(text.split())

        inputs = self.tokenizer.encode_plus(
            text,
            None,
            add_special_tokens=True,
            max_length=self.max_len,
            padding="max_length",
            truncation=True,
            return_token_type_ids=True,
        )
        ids = inputs["input_ids"]
        mask = inputs["attention_mask"]
        token_type_ids = inputs["token_type_ids"]
        return {
            "ids": torch.tensor(ids, dtype=torch.long),
            "mask": torch.tensor(mask, dtype=torch.long),
            "token_type_ids": torch.tensor(token_type_ids, dtype=torch.long),
            "targets": torch.tensor(self.targets[index], dtype=torch.float),
        }

# Based on user model selection, prepare Dataset and DataLoader
MAX_LENGTH = 100
TEST_BATCH_SIZE = 128
infer_dataset = ToxicityDataset(tweet_df, tokenizer, MAX_LENGTH)
infer_params = {"batch_size": TEST_BATCH_SIZE, "shuffle": True, "num_workers": 0}
infer_loader = DataLoader(test_dataset, **test_params)

# Freeze model and input tokens
def inference():
    model.eval()
    final_targets = []
    final_outputs = []
    with torch.no_grad():
        for _, data in enumerate(infer_loader, 0):
            ids = data["ids"].to(device, dtype=torch.long)
            mask = data["mask"].to(device, dtype=torch.long)
            token_type_ids = data["token_type_ids"].to(device, dtype=torch.long)
            targets = data["targets"].to(device, dtype=torch.float)
            outputs = model(ids, mask, token_type_ids)
            final_targets.extend(targets.cpu().detach().numpy().tolist())
            final_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
    return final_outputs, final_targets

prediction, targets = inference()
prediction = np.array(prediction) >= 0.5
targets = np.argmax(targets, axis=1)
prediction = np.argmax(prediction, axis=1)
accuracy = metrics.accuracy_score(targets, prediction)
f1_score_micro = metrics.f1_score(targets, prediction, average="micro")
f1_score_macro = metrics.f1_score(targets, prediction, average="macro")

st.write(prediction)
st.write(f"Accuracy Score = {accuracy}")
st.write(f"F1 Score (Micro) = {f1_score_micro}")
st.write(f"F1 Score (Macro) = {f1_score_macro}")