Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,31 @@ import streamlit as st
|
|
10 |
# Define Torch device. Enable CUDA if available.
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
# Read and format data.
|
14 |
tweets_raw = pd.read_csv("test.csv", nrows=20)
|
15 |
labels_raw = pd.read_csv("test_labels.csv", nrows=20)
|
@@ -26,27 +51,11 @@ option = st.selectbox("Select a text analysis model:", ("BERT", "Fine-tuned BERT
|
|
26 |
bert_path = "bert-base-uncased"
|
27 |
if option == "BERT":
|
28 |
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
29 |
-
model =
|
30 |
else:
|
31 |
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
32 |
model = torch.load("pytorch_bert_toxic.bin", map_location=torch.device(device))
|
33 |
|
34 |
-
# Have data for BertClass ready for our tuned model.
|
35 |
-
class BertClass(torch.nn.Module):
|
36 |
-
def __init__(self):
|
37 |
-
super(BertClass, self).__init__()
|
38 |
-
self.l1 = BertModel.from_pretrained(model_path)
|
39 |
-
self.dropout = torch.nn.Dropout(HEAD_DROP_OUT)
|
40 |
-
self.classifier = torch.nn.Linear(768, 6)
|
41 |
-
|
42 |
-
def forward(self, input_ids, attention_mask, token_type_ids):
|
43 |
-
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
44 |
-
hidden_state = output_1[0]
|
45 |
-
pooler = hidden_state[:, 0]
|
46 |
-
pooler = self.dropout(pooler)
|
47 |
-
output = self.classifier(pooler)
|
48 |
-
return output
|
49 |
-
|
50 |
# Dataset for loading tables into DataLoader
|
51 |
class ToxicityDataset(Dataset):
|
52 |
def __init__(self, dataframe, tokenizer, max_len):
|
|
|
10 |
# Define Torch device. Enable CUDA if available.
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
+
# Have data for BertClass ready for both models
|
14 |
+
class BertClass(torch.nn.Module):
|
15 |
+
def __init__(self):
|
16 |
+
super(BertClass, self).__init__()
|
17 |
+
self.l1 = BertModel.from_pretrained(model_path)
|
18 |
+
self.dropout = torch.nn.Dropout(HEAD_DROP_OUT)
|
19 |
+
self.classifier = torch.nn.Linear(768, 6)
|
20 |
+
|
21 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
22 |
+
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
23 |
+
hidden_state = output_1[0]
|
24 |
+
pooler = hidden_state[:, 0]
|
25 |
+
pooler = self.dropout(pooler)
|
26 |
+
output = self.classifier(pooler)
|
27 |
+
return output
|
28 |
+
|
29 |
+
class PretrainedBertClass(torch.nn.Module):
|
30 |
+
def __init__(self):
|
31 |
+
super(BertClass, self).__init__()
|
32 |
+
self.l1 = BertForSequenceClassification.from_pretrained(bert_path, num_labels=6)
|
33 |
+
|
34 |
+
def forward(self, input_ids, attention_mask, token_type_ids):
|
35 |
+
output = self.l1(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids)
|
36 |
+
return output
|
37 |
+
|
38 |
# Read and format data.
|
39 |
tweets_raw = pd.read_csv("test.csv", nrows=20)
|
40 |
labels_raw = pd.read_csv("test_labels.csv", nrows=20)
|
|
|
51 |
bert_path = "bert-base-uncased"
|
52 |
if option == "BERT":
|
53 |
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
54 |
+
model = PretrainedBertClass()
|
55 |
else:
|
56 |
tokenizer = AutoTokenizer.from_pretrained(bert_path)
|
57 |
model = torch.load("pytorch_bert_toxic.bin", map_location=torch.device(device))
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
# Dataset for loading tables into DataLoader
|
60 |
class ToxicityDataset(Dataset):
|
61 |
def __init__(self, dataframe, tokenizer, max_len):
|