nprasad24 commited on
Commit
6cffbb4
·
verified ·
1 Parent(s): 8011378

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -12
app.py CHANGED
@@ -2,6 +2,7 @@ import subprocess
2
  subprocess.run('pip install -r requirements.txt', shell = True)
3
 
4
  import gradio as gr
 
5
  import os
6
  from PIL import Image
7
  import numpy as np
@@ -14,7 +15,8 @@ from langchain_community.embeddings import HuggingFaceEmbeddings
14
  from langchain.text_splitter import CharacterTextSplitter
15
  from langchain_core.output_parsers import StrOutputParser
16
  from langchain_core.runnables import RunnablePassthrough
17
- from langchain_fireworks import ChatFireworks
 
18
  from langchain_community.llms import Ollama
19
  from langchain_core.prompts import ChatPromptTemplate
20
  from rich.console import Console
@@ -74,19 +76,19 @@ def ragChain():
74
 
75
  output: rag chain
76
  """
77
- loader = TextLoader("knowledgeBase.txt")
78
- docs = loader.load()
79
 
80
- text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
81
- docs = text_splitter.split_documents(docs)
82
 
83
- vectorstore = FAISS.from_documents(documents = docs, embedding = HuggingFaceEmbeddings())
84
  retriever = vectorstore.as_retriever(search_type = "similarity", search_kwargs = {"k": 5})
85
 
86
- APIKEY = "o7T3gVx9Vt8GSJbLyPV1974vF8LXVp01CWqOkWQuHgoHm07H"
87
- os.environ["FIREWORKS_API_KEY"] = APIKEY
88
 
89
- llm = ChatFireworks(model="accounts/fireworks/models/mixtral-8x7b-instruct")
90
 
91
  prompt = ChatPromptTemplate.from_messages(
92
  [
@@ -98,17 +100,17 @@ def ragChain():
98
  ),
99
  (
100
  "human",
101
- """Provide information about the leaf disease in question in bullet points.
102
  Start your answer by mentioning the disease (if any) or healthy in this format: 'Condition: disease name'.
103
  """,
104
  ),
105
-
106
  ("human", "{context}, {question}"),
107
  ]
108
  )
109
 
110
  rag_chain = (
111
- {
112
  "context": retriever,
113
  "question": RunnablePassthrough()
114
  }
 
2
  subprocess.run('pip install -r requirements.txt', shell = True)
3
 
4
  import gradio as gr
5
+ import cv2
6
  import os
7
  from PIL import Image
8
  import numpy as np
 
15
  from langchain.text_splitter import CharacterTextSplitter
16
  from langchain_core.output_parsers import StrOutputParser
17
  from langchain_core.runnables import RunnablePassthrough
18
+ #from langchain_fireworks import ChatFireworks
19
+ from langchain_anthropic import ChatAnthropic
20
  from langchain_community.llms import Ollama
21
  from langchain_core.prompts import ChatPromptTemplate
22
  from rich.console import Console
 
76
 
77
  output: rag chain
78
  """
79
+ #loader = TextLoader("knowledgeBase.txt")
80
+ #docs = loader.load()
81
 
82
+ #text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
83
+ #docs = text_splitter.split_documents(docs)
84
 
85
+ vectorstore = FAISS.load_local("faiss_index", embeddings = HuggingFaceEmbeddings(), allow_dangerous_deserialization = True)
86
  retriever = vectorstore.as_retriever(search_type = "similarity", search_kwargs = {"k": 5})
87
 
88
+ #APIKEY = "o7T3gVx9Vt8GSJbLyPV1974vF8LXVp01CWqOkWQuHgoHm07H"
89
+ #os.environ["FIREWORKS_API_KEY"] = APIKEY
90
 
91
+ llm = ChatAnthropic(model='claude-3-opus-20240229')
92
 
93
  prompt = ChatPromptTemplate.from_messages(
94
  [
 
100
  ),
101
  (
102
  "human",
103
+ """Provide information about the leaf disease in question in bullet points.
104
  Start your answer by mentioning the disease (if any) or healthy in this format: 'Condition: disease name'.
105
  """,
106
  ),
107
+
108
  ("human", "{context}, {question}"),
109
  ]
110
  )
111
 
112
  rag_chain = (
113
+ {
114
  "context": retriever,
115
  "question": RunnablePassthrough()
116
  }