Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import subprocess
|
2 |
+
subprocess.run('pip install -r requirements.txt', shell = True)
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import os
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
from transformers import pipeline
|
9 |
+
import transformers
|
10 |
+
transformers.logging.set_verbosity_error()
|
11 |
+
from langchain_community.document_loaders import TextLoader
|
12 |
+
from langchain_community.vectorstores import FAISS
|
13 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
14 |
+
from langchain.text_splitter import CharacterTextSplitter
|
15 |
+
from langchain_core.output_parsers import StrOutputParser
|
16 |
+
from langchain_core.runnables import RunnablePassthrough
|
17 |
+
from langchain_fireworks import ChatFireworks
|
18 |
+
from langchain_community.llms import Ollama
|
19 |
+
from langchain_core.prompts import ChatPromptTemplate
|
20 |
+
from rich.console import Console
|
21 |
+
from rich.markdown import Markdown
|
22 |
+
|
23 |
+
transformers.logging.set_verbosity_error()
|
24 |
+
|
25 |
+
|
26 |
+
|
27 |
+
def image_to_query(image):
|
28 |
+
"""
|
29 |
+
input: Image
|
30 |
+
|
31 |
+
function: Performs image classification using fine-tuned model
|
32 |
+
|
33 |
+
output: Query for the LLM
|
34 |
+
"""
|
35 |
+
image = Image.open('test.jpg')
|
36 |
+
classifier = pipeline("image-classification", model = "nprasad24/bean_classifier")
|
37 |
+
|
38 |
+
scores = classifier(image)
|
39 |
+
|
40 |
+
# Get the dictionary with the maximum score
|
41 |
+
max_score_dict = max(scores, key=lambda x: x['score'])
|
42 |
+
|
43 |
+
# Extract the label with the maximum score
|
44 |
+
label_with_max_score = max_score_dict['label']
|
45 |
+
|
46 |
+
# script to check if the image uploaded is indeed a leaf or not
|
47 |
+
counter = 0
|
48 |
+
for ele in scores:
|
49 |
+
if 0.2 <= ele['score'] <= 0.4:
|
50 |
+
counter += 1
|
51 |
+
|
52 |
+
if label_with_max_score == 'healthy' and counter != 3:
|
53 |
+
query = "The plant is healthy. Give tips on maintaining the plant"
|
54 |
+
elif label_with_max_score == 'bean_rust' and counter != 3:
|
55 |
+
query = "The detected disease is bean rust. Explain the disease"
|
56 |
+
elif label_with_max_score == 'angular_leaf_spot' and counter != 3:
|
57 |
+
query = "The detected disease is angular leaf spot. Explain the disease"
|
58 |
+
else:
|
59 |
+
query = "Given image is not of a plant."
|
60 |
+
|
61 |
+
return query
|
62 |
+
|
63 |
+
def ragChain():
|
64 |
+
"""
|
65 |
+
function: creates a rag chain
|
66 |
+
|
67 |
+
output: rag chain
|
68 |
+
"""
|
69 |
+
loader = TextLoader("knowledgeBase.txt")
|
70 |
+
docs = loader.load()
|
71 |
+
|
72 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
73 |
+
docs = text_splitter.split_documents(docs)
|
74 |
+
|
75 |
+
vectorstore = FAISS.from_documents(documents = docs, embedding = HuggingFaceEmbeddings())
|
76 |
+
retriever = vectorstore.as_retriever(search_type = "similarity", search_kwargs = {"k": 5})
|
77 |
+
|
78 |
+
APIKEY = "o7T3gVx9Vt8GSJbLyPV1974vF8LXVp01CWqOkWQuHgoHm07H"
|
79 |
+
os.environ["FIREWORKS_API_KEY"] = APIKEY
|
80 |
+
|
81 |
+
llm = ChatFireworks(model="accounts/fireworks/models/mixtral-8x7b-instruct")
|
82 |
+
|
83 |
+
prompt = ChatPromptTemplate.from_messages(
|
84 |
+
[
|
85 |
+
(
|
86 |
+
"system",
|
87 |
+
"""You are a knowledgeable agricultural assistant. If a disease is detected, you have to give information on the disease.
|
88 |
+
If the plant is healthy, just give maintenance tips. """
|
89 |
+
),
|
90 |
+
(
|
91 |
+
"human",
|
92 |
+
"""Provide information about the leaf disease in question in bullet points.
|
93 |
+
Start your answer by mentioning the disease (if any) or healthy in this format: 'Condition: disease name'.
|
94 |
+
If the image is not of a plant, ask human to upload image of a plant and stop generating any response.
|
95 |
+
""",
|
96 |
+
),
|
97 |
+
|
98 |
+
("human", "{context}, {question}"),
|
99 |
+
]
|
100 |
+
)
|
101 |
+
|
102 |
+
rag_chain = (
|
103 |
+
{
|
104 |
+
"context": retriever,
|
105 |
+
"question": RunnablePassthrough()
|
106 |
+
}
|
107 |
+
| prompt
|
108 |
+
| llm
|
109 |
+
| StrOutputParser()
|
110 |
+
)
|
111 |
+
|
112 |
+
return rag_chain
|
113 |
+
|
114 |
+
def generate_response(rag_chain, query):
|
115 |
+
"""
|
116 |
+
input: rag chain, query
|
117 |
+
|
118 |
+
function: generates response using llm and knowledge base
|
119 |
+
|
120 |
+
output: generated response by the llm
|
121 |
+
"""
|
122 |
+
return Markdown(rag_chain.invoke(f"{query}"))
|
123 |
+
|
124 |
+
def main():
|
125 |
+
console = Console()
|
126 |
+
|
127 |
+
query = image_to_query('test2.jpeg')
|
128 |
+
chain = ragChain()
|
129 |
+
output = generate_response(chain, query)
|
130 |
+
output = Markdown(output)
|
131 |
+
return output
|
132 |
+
|
133 |
+
title = "Bean Classifier and Instructor"
|
134 |
+
description = "Professor Bean is an agricultural expert. He will guide you on how to protect your plants from bean diseases"
|
135 |
+
app = gr.Interface(fn=main, inputs="image", outputs="text", title=title,
|
136 |
+
description=description)
|
137 |
+
app.launch(share=True)
|