import os import yaml from dotenv import load_dotenv from langchain_google_genai import ChatGoogleGenerativeAI from langchain_community.graphs import Neo4jGraph from langchain_core.prompts.prompt import PromptTemplate from langchain.chains import GraphCypherQAChain from langchain_core.messages import SystemMessage, HumanMessage, AIMessage def config(): load_dotenv() # Set up Neo4J & Gemini API os.environ["NEO4J_URI"] = os.getenv("NEO4J_URI") os.environ["NEO4J_USERNAME"] = os.getenv("NEO4J_USERNAME") os.environ["NEO4J_PASSWORD"] = os.getenv("NEO4J_PASSWORD") os.environ["GOOGLE_API_KEY"] = os.getenv("GEMINI_API_KEY") def load_prompt(filepath): with open(filepath, "r") as file: prompt = yaml.safe_load(file) return prompt def init_(): config() graph = Neo4jGraph(enhanced_schema= True) llm = ChatGoogleGenerativeAI( model= "gemini-1.5-flash-latest", temperature = 0 ) return graph, llm def get_llm_response(query): # Connect to Neo4J Knowledge Graph knowledge_graph, llm_chat = init_() cypher_prompt = load_prompt("Agent/prompts/cypher_prompt.yaml") qa_prompt = load_prompt("Agent/prompts/qa_prompt.yaml") CYPHER_GENERATION_PROMPT = PromptTemplate(**cypher_prompt) QA_GENERATION_PROMPT = PromptTemplate(**qa_prompt) chain = GraphCypherQAChain.from_llm( llm_chat, graph=knowledge_graph, verbose=True, cypher_prompt= CYPHER_GENERATION_PROMPT, qa_prompt= QA_GENERATION_PROMPT ) return chain.invoke({"query": query})["result"] def llm_answer(message, history): try: response = get_llm_response(message["text"]) except Exception: response = "Exception" except Error: response = "Error" return response # if __name__ == "__main__": # message = "Have any company recruiting jobs about Machine Learning and coresponding job titles?" # history = [("What's your name?", "My name is Gemini")] # resp = llm_answer(message, history) # print(resp)