nragrawal's picture
First commit
30bed5f
import gradio as gr
from transformers import AutoModelForImageClassification
import torch
import torchvision.transforms as transforms
from PIL import Image
# Load model from Hub instead of local file
def load_model():
model = AutoModelForImageClassification.from_pretrained(
"YOUR_USERNAME/resnet-imagenet",
trust_remote_code=True
)
model.eval()
return model
# Preprocessing
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
# Inference function
def predict(image):
model = load_model()
# Preprocess image
img = Image.fromarray(image)
img = transform(img).unsqueeze(0)
# Inference
with torch.no_grad():
output = model(img)
probabilities = torch.nn.functional.softmax(output[0], dim=0)
# Get top 5 predictions
top5_prob, top5_catid = torch.topk(probabilities, 5)
return {f"Class {i}": float(prob) for i, prob in zip(top5_catid, top5_prob)}
# Create Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.Image(),
outputs=gr.Label(num_top_classes=5),
title="ResNet Image Classification",
description="Upload an image to classify it using ResNet"
)
iface.launch()