Spaces:
Sleeping
Sleeping
Add network
Browse files- network.py +129 -0
network.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torchvision.models as models
|
4 |
+
|
5 |
+
class Bottleneck(nn.Module):
|
6 |
+
expansion = 4
|
7 |
+
|
8 |
+
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
|
9 |
+
super(Bottleneck, self).__init__()
|
10 |
+
|
11 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
12 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
13 |
+
|
14 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3,
|
15 |
+
stride=stride, padding=1, bias=False)
|
16 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
17 |
+
|
18 |
+
self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion,
|
19 |
+
kernel_size=1, bias=False)
|
20 |
+
self.bn3 = nn.BatchNorm2d(out_channels * self.expansion)
|
21 |
+
|
22 |
+
self.relu = nn.ReLU(inplace=True)
|
23 |
+
self.downsample = downsample
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
identity = x
|
27 |
+
|
28 |
+
out = self.conv1(x)
|
29 |
+
out = self.bn1(out)
|
30 |
+
out = self.relu(out)
|
31 |
+
|
32 |
+
out = self.conv2(out)
|
33 |
+
out = self.bn2(out)
|
34 |
+
out = self.relu(out)
|
35 |
+
|
36 |
+
out = self.conv3(out)
|
37 |
+
out = self.bn3(out)
|
38 |
+
|
39 |
+
if self.downsample is not None:
|
40 |
+
identity = self.downsample(x)
|
41 |
+
|
42 |
+
out += identity
|
43 |
+
out = self.relu(out)
|
44 |
+
|
45 |
+
return out
|
46 |
+
|
47 |
+
class ResNet50(nn.Module):
|
48 |
+
def __init__(self, num_classes=1000):
|
49 |
+
super(ResNet50, self).__init__()
|
50 |
+
|
51 |
+
self.in_channels = 64
|
52 |
+
|
53 |
+
# Initial layers
|
54 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
55 |
+
self.bn1 = nn.BatchNorm2d(64)
|
56 |
+
self.relu = nn.ReLU(inplace=True)
|
57 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
58 |
+
|
59 |
+
# Residual layers
|
60 |
+
self.layer1 = self._make_layer(64, 3)
|
61 |
+
self.layer2 = self._make_layer(128, 4, stride=2)
|
62 |
+
self.layer3 = self._make_layer(256, 6, stride=2)
|
63 |
+
self.layer4 = self._make_layer(512, 3, stride=2)
|
64 |
+
|
65 |
+
# Classification head
|
66 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
67 |
+
self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes)
|
68 |
+
|
69 |
+
# Weight initialization
|
70 |
+
self._initialize_weights()
|
71 |
+
|
72 |
+
def _make_layer(self, out_channels, blocks, stride=1):
|
73 |
+
downsample = None
|
74 |
+
if stride != 1 or self.in_channels != out_channels * Bottleneck.expansion:
|
75 |
+
downsample = nn.Sequential(
|
76 |
+
nn.Conv2d(self.in_channels, out_channels * Bottleneck.expansion,
|
77 |
+
kernel_size=1, stride=stride, bias=False),
|
78 |
+
nn.BatchNorm2d(out_channels * Bottleneck.expansion),
|
79 |
+
)
|
80 |
+
|
81 |
+
layers = []
|
82 |
+
layers.append(Bottleneck(self.in_channels, out_channels, stride, downsample))
|
83 |
+
|
84 |
+
self.in_channels = out_channels * Bottleneck.expansion
|
85 |
+
for _ in range(1, blocks):
|
86 |
+
layers.append(Bottleneck(self.in_channels, out_channels))
|
87 |
+
|
88 |
+
return nn.Sequential(*layers)
|
89 |
+
|
90 |
+
def _initialize_weights(self):
|
91 |
+
for m in self.modules():
|
92 |
+
if isinstance(m, nn.Conv2d):
|
93 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
94 |
+
elif isinstance(m, nn.BatchNorm2d):
|
95 |
+
nn.init.constant_(m.weight, 1)
|
96 |
+
nn.init.constant_(m.bias, 0)
|
97 |
+
|
98 |
+
def forward(self, x):
|
99 |
+
x = self.conv1(x)
|
100 |
+
x = self.bn1(x)
|
101 |
+
x = self.relu(x)
|
102 |
+
x = self.maxpool(x)
|
103 |
+
|
104 |
+
x = self.layer1(x)
|
105 |
+
x = self.layer2(x)
|
106 |
+
x = self.layer3(x)
|
107 |
+
x = self.layer4(x)
|
108 |
+
|
109 |
+
x = self.avgpool(x)
|
110 |
+
x = torch.flatten(x, 1)
|
111 |
+
x = self.fc(x)
|
112 |
+
|
113 |
+
return x
|
114 |
+
|
115 |
+
def create_model(num_classes, pretrained=False):
|
116 |
+
"""
|
117 |
+
Create a ResNet-50 model
|
118 |
+
Args:
|
119 |
+
num_classes: Number of output classes
|
120 |
+
pretrained: Whether to use pretrained weights from ImageNet
|
121 |
+
"""
|
122 |
+
# Load model with or without pretrained weights
|
123 |
+
model = models.resnet50(pretrained=pretrained)
|
124 |
+
|
125 |
+
# Modify the final layer for our number of classes
|
126 |
+
num_ftrs = model.fc.in_features
|
127 |
+
model.fc = nn.Linear(num_ftrs, num_classes)
|
128 |
+
|
129 |
+
return model
|