import torch import torch.nn as nn import torchvision.models as models class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_channels, out_channels, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.conv3 = nn.Conv2d(out_channels, out_channels * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(out_channels * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class ResNet50(nn.Module): def __init__(self, num_classes=1000): super(ResNet50, self).__init__() self.in_channels = 64 # Initial layers self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Residual layers self.layer1 = self._make_layer(64, 3) self.layer2 = self._make_layer(128, 4, stride=2) self.layer3 = self._make_layer(256, 6, stride=2) self.layer4 = self._make_layer(512, 3, stride=2) # Classification head self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * Bottleneck.expansion, num_classes) # Weight initialization self._initialize_weights() def _make_layer(self, out_channels, blocks, stride=1): downsample = None if stride != 1 or self.in_channels != out_channels * Bottleneck.expansion: downsample = nn.Sequential( nn.Conv2d(self.in_channels, out_channels * Bottleneck.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels * Bottleneck.expansion), ) layers = [] layers.append(Bottleneck(self.in_channels, out_channels, stride, downsample)) self.in_channels = out_channels * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self.in_channels, out_channels)) return nn.Sequential(*layers) def _initialize_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = torch.flatten(x, 1) x = self.fc(x) return x def create_model(num_classes, pretrained=False): """ Create a ResNet-50 model Args: num_classes: Number of output classes pretrained: Whether to use pretrained weights from ImageNet """ # Load model with or without pretrained weights model = models.resnet50(pretrained=pretrained) # Modify the final layer for our number of classes num_ftrs = model.fc.in_features model.fc = nn.Linear(num_ftrs, num_classes) return model