nroggendorff commited on
Commit
703664e
·
verified ·
1 Parent(s): b7c054a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -2
app.py CHANGED
@@ -4,11 +4,11 @@ import torch
4
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
5
  from threading import Thread
6
 
7
- torch.set_default_device("cuda")
8
  tokenizer = AutoTokenizer.from_pretrained(
9
  "cognitivecomputations/dolphin-2.9.1-mixtral-1x22b",
10
  trust_remote_code=True
11
  )
 
12
  model = AutoModelForCausalLM.from_pretrained(
13
  "cognitivecomputations/dolphin-2.9.1-mixtral-1x22b",
14
  torch_dtype="auto",
@@ -23,7 +23,7 @@ system_prompt = "<|im_start|>system\nYou are Dolphin, a helpful AI assistant.<|i
23
  def predict(message, history):
24
  history_transformer_format = history + [[message, ""]]
25
  messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format])
26
- input_ids = tokenizer([messages], return_tensors="pt").to('cuda')
27
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
28
  generate_kwargs = dict(
29
  input_ids,
 
4
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
5
  from threading import Thread
6
 
 
7
  tokenizer = AutoTokenizer.from_pretrained(
8
  "cognitivecomputations/dolphin-2.9.1-mixtral-1x22b",
9
  trust_remote_code=True
10
  )
11
+
12
  model = AutoModelForCausalLM.from_pretrained(
13
  "cognitivecomputations/dolphin-2.9.1-mixtral-1x22b",
14
  torch_dtype="auto",
 
23
  def predict(message, history):
24
  history_transformer_format = history + [[message, ""]]
25
  messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format])
26
+ input_ids = tokenizer([messages], return_tensors="pt")
27
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
28
  generate_kwargs = dict(
29
  input_ids,