import spaces import gradio as gr import torch from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer from threading import Thread class StopOnTokens(StoppingCriteria): def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: stop_ids = [50256, 50295] for stop_id in stop_ids: if input_ids[0][-1] == stop_id: return True return False @spaces.GPU(duration=480) def predict(message, history): torch.set_default_device("cuda") tokenizer = AutoTokenizer.from_pretrained( "cognitivecomputations/dolphin-2.8-mistral-7b-v02", trust_remote_code=True ) model = AutoModelForCausalLM.from_pretrained( "cognitivecomputations/dolphin-2.8-mistral-7b-v02", torch_dtype="auto", load_in_4bit=True, trust_remote_code=True ) history_transformer_format = history + [[message, ""]] stop = StopOnTokens() system_prompt = "<|im_start|>system\nYou are Dolphin, a helpful AI assistant.<|im_end|>" messages = system_prompt + "".join(["".join(["\n<|im_start|>user\n" + item[0], "<|im_end|>\n<|im_start|>assistant\n" + item[1]]) for item in history_transformer_format]) input_ids = tokenizer([messages], return_tensors="pt").to('cuda') streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( input_ids, streamer=streamer, max_new_tokens=256, do_sample=True, top_p=0.95, top_k=50, temperature=0.7, num_beams=1, stopping_criteria=StoppingCriteriaList([stop]) ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() partial_message = "" for new_token in streamer: partial_message += new_token if '<|im_end|>' in partial_message: break yield partial_message gr.ChatInterface(predict).launch()