import gradio as gr from diffusers import DiffusionPipeline def generate_image(steps): pipeline = DiffusionPipeline.from_pretrained("nroggendorff/obama", use_safetensors=True) pipe = pipeline.to("cuda") image = pipe(num_inference_steps=steps).images[0] return image with gr.Blocks() as demo: sampling_steps = gr.Slider(value=1000, minimum=20, maximum=1000, label="Sampling Steps", info="How many iterations per image") btn = gr.Button("Generate Image") output_image = gr.Image(label="Generated Image") btn.click(fn=generate_image, inputs=sampling_steps, outputs=output_image) demo.launch()