File size: 9,902 Bytes
ea56a4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import argparse
import os
os.environ['CUDA_HOME'] = '/usr/local/cuda'
os.environ['PATH'] = os.environ['PATH'] + ':/usr/local/cuda/bin'
from datetime import datetime

import numpy as np
import torch
from diffusers.image_processor import VaeImageProcessor
from huggingface_hub import snapshot_download
from PIL import Image
torch.jit.script = lambda f: f
from model.cloth_masker import AutoMasker, vis_mask
from model.pipeline import CatVTONPipeline
from utils import init_weight_dtype, resize_and_crop, resize_and_padding

# ํŒจํ‚ค์ง€ ์ถ”๊ฐ€
import cv2
'''
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--base_model_path",
        type=str,
        default="booksforcharlie/stable-diffusion-inpainting",
        # default="runwayml/stable-diffusion-inpainting",
        help=(
            "The path to the base model to use for evaluation. This can be a local path or a model identifier from the Model Hub."
        ),
    )
    parser.add_argument(
        "--resume_path",
        type=str,
        default="zhengchong/CatVTON",
        help=(
            "The Path to the checkpoint of trained tryon model."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="resource/demo/output",
        help="The output directory where the model predictions will be written.",
    )

    parser.add_argument(
        "--width",
        type=int,
        default=768,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--height",
        type=int,
        default=1024,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--repaint", 
        action="store_true", 
        help="Whether to repaint the result image with the original background."
    )
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        default=True,
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
        ),
    )
    
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    return args

args = parse_args()
'''
RESUME_PATH = os.getenv("RESUME_PATH", "zhengchong/CatVTON")
repo_path = snapshot_download(repo_id=RESUME_PATH)

# AutoMasker
mask_processor = VaeImageProcessor(vae_scale_factor=8, do_normalize=False, do_binarize=True, do_convert_grayscale=True)
automasker = AutoMasker(
    densepose_ckpt=os.path.join(repo_path, "DensePose"),
    schp_ckpt=os.path.join(repo_path, "SCHP"),
    device='cuda', 
)

person_image = Image.open("./resource/demo/example/person/men/model_7.png").convert("RGB")
mask = automasker(
            person_image,
            'upper'
        )['mask'] # ์—ฌ๊ธฐ์„œ ๋ฆฌํ„ด๋˜๋Š” mask๋Š” PIL ์ด๋ฏธ์ง€์ž„.(cloth_masker.py ์ฐธ์กฐ) # ์ฐธ๊ณ ๋กœ ['densepose']๋กœ densepose๋„ ํ™•์ธ๊ฐ€๋Šฅ. 



### ์—ฌ๊ธฐ์„œ mask modify์— ์‚ฌ์šฉ๋œ ์ฝ”๋“œ๋ฅผ app.py์— ์ฒดํฌํ•ด๋†“์€ ๋ถ€๋ถ„์— ์ถ”๊ฐ€ํ•˜๋ฉด ๋œ๋‹ค!
def remove_bottom_part(mask: np.ndarray, y_threshold: int):
    """
    ์ด๋ฏธ์ง€์˜ y_threshold ์•„๋ž˜์— ์žˆ๋Š” ๋ถ€๋ถ„์„ ์‚ญ์ œ.
    :param mask: ์ž…๋ ฅ ๋งˆ์Šคํฌ (numpy ๋ฐฐ์—ด)
    :param y_threshold: ์ œ๊ฑฐํ•  Y ์ขŒํ‘œ ๊ฐ’
    :return: ์ˆ˜์ •๋œ ๋งˆ์Šคํฌ (numpy ๋ฐฐ์—ด)
    """
    # y_threshold ์•„๋ž˜์˜ ๋ชจ๋“  ํ”ฝ์…€์„ 0์œผ๋กœ ์„ค์ •
    mask[y_threshold:, :] = 0
    return Image.fromarray(mask)


# closing ์—ฐ์‚ฐ / fitting_mode๊ฐ€ standard ๋‚˜ loose ์ผ๋•Œ๋งŒ ์‚ฌ์šฉํ•˜๊ธฐ
def morph_close(mask):
    mask_np = np.array(mask)
    kernel = np.ones((30, 30), np.uint8) # ์ปค์งˆ์ˆ˜๋ก ์ž˜ ์—ฐ๊ฒฐ๋จ

    closed_mask = cv2.morphologyEx(mask_np, cv2.MORPH_CLOSE, kernel)
    
    return Image.fromarray(closed_mask)


# opening ์—ฐ์‚ฐ / fitting_mode๊ฐ€ standard ๋‚˜ loose ์ผ๋•Œ๋งŒ ์‚ฌ์šฉํ•˜๊ธฐ
def morph_open(mask):
    mask_np = np.array(mask)
    kernel = np.ones((30, 30), np.uint8) # ์ปค์งˆ์ˆ˜๋ก ์ž˜ ์‚ฌ๋ผ์ง

    #closed_mask = cv2.morphologyEx(mask_np, cv2.MORPH_CLOSE, kernel)
    opened_mask = cv2.morphologyEx(mask_np, cv2.MORPH_OPEN, kernel) #opened_mask๋Š” numpy ์—ฐ์‚ฐ ๊ฒฐ๊ณผ ์ด๋ฏ€๋กœ PIL ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜ ํ•„์š”
    
    return Image.fromarray(opened_mask)

# def morph_open2(mask):
    mask_np = np.array(mask)
    kernel = np.ones((150, 150), np.uint8) # ์ปค์งˆ์ˆ˜๋ก ์ž˜ ์‚ฌ๋ผ์ง

    #closed_mask = cv2.morphologyEx(mask_np, cv2.MORPH_CLOSE, kernel)
    opened_mask = cv2.morphologyEx(mask_np, cv2.MORPH_OPEN, kernel) #opened_mask๋Š” numpy ์—ฐ์‚ฐ ๊ฒฐ๊ณผ ์ด๋ฏ€๋กœ PIL ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜ ํ•„์š”
    
    return Image.fromarray(opened_mask)

## opened_mask = morph_open(mask)
## opened_mask.save('./opened_mask.png') #opened_mask๋Š” PIL ์ด๋ฏธ์ง€ ํ˜•ํƒœ๋กœ ๋ฐ˜ํ™˜๋˜์—ˆ์œผ๋ฏ€๋กœ (Image.fromarray()์‚ฌ์šฉํ•ด์„œ) .save๋ฅผ ๋ฐ”๋กœ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋‹ค.

#opened_mask2 = morph_open2(mask)
#kernel = np.ones((50, 50), np.uint8)
#opened_mask2 = cv2.dilate(np.array(opened_mask2), kernel, iterations=1)
#opened_mask2 = Image.fromarray(opened_mask2)
#opened_mask2 = mask_processor.blur(opened_mask2, blur_factor=9)
#opened_mask2.save('./opened_mask2.png')



# mask = mask_processor.blur(mask, blur_factor=9)
## mask.save("./test_mask.png")  # ๋งˆ์Šคํฌ๋ฅผ PNG ํŒŒ์ผ๋กœ ์ €์žฅ
## masked_person = vis_mask(person_image, mask) # app.py์—์„œ๋„ blur ์ฒ˜๋ฆฌ ํ•œ ๋‹ค์Œ์— vis_mask ๋ฉ”์„œ๋“œ ํ˜ธ์ถœํ•จ.
## masked_person.save("./test_masked_person.png")  # ๋งˆ์Šคํฌ์™€ target img๊ฐ€ ํ•ฉ์ณ์ง„ ์‚ฌ์ง„์„ PNG ํŒŒ์ผ๋กœ ์ €์žฅ



# mask์˜ y์ถ• ์Œ์˜ ๋ฐฉํ–ฅ ์ด๋™
def extend_mask_downward(mask_image: np.ndarray, pixels: int) -> np.ndarray:
    """
    y์ถ• ์Œ์˜ ๋ฐฉํ–ฅ์œผ๋กœ (์•„๋ž˜๋กœ) ๋งˆ์Šคํฌ ์ด๋ฏธ์ง€๋ฅผ ํ™•์žฅํ•˜๋Š” ํ•จ์ˆ˜.
    
    :param mask_image: ๋งˆ์Šคํฌ ์ด๋ฏธ์ง€ (numpy ๋ฐฐ์—ด)
    :param pixels: ํ™•์žฅํ•  ํ”ฝ์…€ ์ˆ˜
    :return: ํ™•์žฅ๋œ ๋งˆ์Šคํฌ ์ด๋ฏธ์ง€ (numpy ๋ฐฐ์—ด)
    """
    # ์ด์ง„ํ™”๋œ ๋งˆ์Šคํฌ๋ฅผ ๋งŒ๋“ฆ
    mask = cv2.threshold(mask_image, 127, 255, cv2.THRESH_BINARY)[1]

    # ํ™•์žฅ์„ ์œ„ํ•œ ์ปค๋„. y์ถ•์œผ๋กœ๋งŒ ํ™•์žฅํ•˜๊ธฐ ์œ„ํ•ด ์„ธ๋กœ ๊ธธ์ด๋ฅผ ํฌ๊ฒŒ ์„ค์ •ํ•จ
    kernel = np.zeros((pixels, 1), np.uint8)  # y์ถ•์œผ๋กœ๋งŒ ๊ธธ์–ด์ง„ ์ปค๋„

    # y์ถ• ์Œ์˜ ๋ฐฉํ–ฅ์œผ๋กœ๋งŒ ํ™•์žฅ (cv2.dilate ์‚ฌ์šฉ)
    extended_mask = cv2.dilate(mask, kernel, iterations=1)
    
    return Image.fromarray(extended_mask)


def image_equal(img1, img2):
    return np.array_equal(np.array(img1), np.array(img2))

# ๋งˆ์Šคํฌ๋ฅผ y์ถ• ์Œ์˜ ๋ฐฉํ–ฅ์œผ๋กœ 50ํ”ฝ์…€ ํ™•์žฅ
## extended_mask = extend_mask_downward(np.array(mask), pixels=100)

# ํ™•์žฅ๋œ ๋งˆ์Šคํฌ ์ €์žฅ
## extended_mask.save('extended_mask_image.png')

# ์ตœ์ข… ๋งˆ์Šคํฌ ์ €์žฅ
# fitting ์ •๋„์— ๋”ฐ๋ผ, extended_mask ํ•จ์ˆ˜ ํ˜ธ์ถœ ๋ณ€์ˆ˜์ธ pixels๋ฅผ ์กฐ์ ˆํ•˜๋ฉด ๋œ๋‹ค.
# ์ •ํ™•๋„๋ฅผ ์œ„ํ•ด ๊ทธ๋ƒฅ dilation ํ•˜์ง€ ์•Š๊ณ , y์ขŒํ‘œ๊ฐ€ ์•ฝ๊ฐ„ ๋‹ค๋ฅธ ๋‘ ๋งˆ์Šคํฌ๋ฅผ ํ•ฉ์ณค๋‹ค.
## final_mask = Image.fromarray(np.array(opened_mask) | np.array(extended_mask))
## final_mask = morph_close(morph_open(final_mask)) #๋ถˆํ•„์š”ํ•œ ๋™๋–จ์–ด์ง„ ๋ถ€๋ถ„ ์‚ญ์ œ -> ์—ฐ๊ฒฐ๋˜์ง€ ์•Š์€ ๋ถ€๋ถ„ ์—ฐ๊ฒฐ

## final_mask.save('final_mask_image.png')
## masked_person2 = vis_mask(person_image, final_mask) # app.py์—์„œ๋„ blur ์ฒ˜๋ฆฌ ํ•œ ๋‹ค์Œ์— vis_mask ๋ฉ”์„œ๋“œ ํ˜ธ์ถœํ•จ.
## masked_person2.save("./test_masked_person2.png")  # ๋งˆ์Šคํฌ์™€ target img๊ฐ€ ํ•ฉ์ณ์ง„ ์‚ฌ์ง„์„ PNG ํŒŒ์ผ๋กœ ์ €์žฅ




#person_image = Image.open("path_to_image").convert("RGB")
#standard_image = Image.open("./resource/demo/example/person/men/m_lvl3.png").convert("RGB")



"""
compare_image_mlvl3 = Image.open("./resource/demo/example/person/men/m_lvl3.png").convert("RGB")
compare_image_mlvl3 = resize_and_crop(compare_image_mlvl3, (args.width, args.height))

person_image2 = Image.open("./resource/demo/example/person/men/m_lvl0.png").convert("RGB") # ์ด๊ฑธ ์–ด๋Š bmi ๋ ˆ๋ฒจ์„ ๊ธฐ์ค€์œผ๋กœ ์“ธ์ง€๋Š” ๋ญ.. ์‹คํ—˜ํ•ด๋ณด๋ฉด์„œ ์ œ์ผ ์ข‹์€ ๊ฑฐ ์ •ํ•˜๋ฉด ๋จ.
person_image2 = resize_and_crop(person_image2, (args.width, args.height))
mask = automasker(
    person_image2,
    "upper"
)['mask']
mask.save("./first_mask.png")

# ์ดํ›„ ์ฒ˜๋ฆฌ
sam_mask_lower = Image.open("./resource/demo/example/person/sam/m_lvl3_lower_sam.png").convert("L")
sam_mask_lower = resize_and_crop(sam_mask_lower, (args.width, args.height))
sam_mask_upper = Image.open("./resource/demo/example/person/sam/m_lvl3_upper_sam.png").convert("L")
sam_mask_upper = resize_and_crop(sam_mask_upper, (args.width, args.height))

mask_np = np.array(mask) 
sam_mask_upper_np = np.array(sam_mask_upper)
sam_mask_lower_np = np.array(sam_mask_lower)

kernel = np.ones((10, 10), np.uint8)
sam_mask_upper_np = cv2.dilate(sam_mask_upper_np, kernel, iterations=1)
sam_mask_lower_np = cv2.dilate(sam_mask_lower_np, kernel, iterations=1)

result_np = np.where(sam_mask_lower_np== 255, 0, mask_np)
result_np = np.where(sam_mask_upper_np== 255, 255, result_np)

mask = Image.fromarray(result_np)
mask.save("./last_mask2.png")
"""