Spaces:
Running
on
Zero
Running
on
Zero
import os | |
from PIL import Image | |
import uuid | |
import re | |
def parse_prompt_attention(text): | |
re_attention = re.compile(r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", re.X) | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith('\\'): | |
res.append([text[1:], 1.0]) | |
elif text == '(': | |
round_brackets.append(len(res)) | |
elif text == '[': | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ')' and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == ']' and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
parts = re.split(re.compile(r"\s*\bBREAK\b\s*", re.S), text) | |
for i, part in enumerate(parts): | |
if i > 0: | |
res.append(["BREAK", -1]) | |
res.append([part, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [["", 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
def prompt_attention_to_invoke_prompt(attention): | |
tokens = [] | |
for text, weight in attention: | |
# Round weight to 2 decimal places | |
weight = round(weight, 2) | |
if weight == 1.0: | |
tokens.append(text) | |
elif weight < 1.0: | |
if weight < 0.8: | |
tokens.append(f"({text}){weight}") | |
else: | |
tokens.append(f"({text})-" + "-" * int((1.0 - weight) * 10)) | |
else: | |
if weight < 1.3: | |
tokens.append(f"({text})" + "+" * int((weight - 1.0) * 10)) | |
else: | |
tokens.append(f"({text}){weight}") | |
return "".join(tokens) | |
def concat_tensor(t): | |
t_list = torch.split(t, 1, dim=0) | |
t = torch.cat(t_list, dim=1) | |
return t | |
def merge_embeds(prompt_chanks, compel): | |
num_chanks = len(prompt_chanks) | |
if num_chanks != 0: | |
power_prompt = 1/(num_chanks*(num_chanks+1)//2) | |
prompt_embs = compel(prompt_chanks) | |
t_list = list(torch.split(prompt_embs, 1, dim=0)) | |
for i in range(num_chanks): | |
t_list[-(i+1)] = t_list[-(i+1)] * ((i+1)*power_prompt) | |
prompt_emb = torch.stack(t_list, dim=0).sum(dim=0) | |
else: | |
prompt_emb = compel('') | |
return prompt_emb | |
def detokenize(chunk, actual_prompt): | |
chunk[-1] = chunk[-1].replace('</w>', '') | |
chanked_prompt = ''.join(chunk).strip() | |
while '</w>' in chanked_prompt: | |
if actual_prompt[chanked_prompt.find('</w>')] == ' ': | |
chanked_prompt = chanked_prompt.replace('</w>', ' ', 1) | |
else: | |
chanked_prompt = chanked_prompt.replace('</w>', '', 1) | |
actual_prompt = actual_prompt.replace(chanked_prompt,'') | |
return chanked_prompt.strip(), actual_prompt.strip() | |
def tokenize_line(line, tokenizer): # split into chunks | |
actual_prompt = line.lower().strip() | |
actual_tokens = tokenizer.tokenize(actual_prompt) | |
max_tokens = tokenizer.model_max_length - 2 | |
comma_token = tokenizer.tokenize(',')[0] | |
chunks = [] | |
chunk = [] | |
for item in actual_tokens: | |
chunk.append(item) | |
if len(chunk) == max_tokens: | |
if chunk[-1] != comma_token: | |
for i in range(max_tokens-1, -1, -1): | |
if chunk[i] == comma_token: | |
actual_chunk, actual_prompt = detokenize(chunk[:i+1], actual_prompt) | |
chunks.append(actual_chunk) | |
chunk = chunk[i+1:] | |
break | |
else: | |
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt) | |
chunks.append(actual_chunk) | |
chunk = [] | |
else: | |
actual_chunk, actual_prompt = detokenize(chunk, actual_prompt) | |
chunks.append(actual_chunk) | |
chunk = [] | |
if chunk: | |
actual_chunk, _ = detokenize(chunk, actual_prompt) | |
chunks.append(actual_chunk) | |
return chunks | |
def get_embed_new(prompt, pipeline, compel, only_convert_string=False, compel_process_sd=False): | |
if compel_process_sd: | |
return merge_embeds(tokenize_line(prompt, pipeline.tokenizer), compel) | |
else: | |
# fix bug weights conversion excessive emphasis | |
prompt = prompt.replace("((", "(").replace("))", ")").replace("\\", "\\\\\\") | |
# Convert to Compel | |
attention = parse_prompt_attention(prompt) | |
global_attention_chanks = [] | |
for att in attention: | |
for chank in att[0].split(','): | |
temp_prompt_chanks = tokenize_line(chank, pipeline.tokenizer) | |
for small_chank in temp_prompt_chanks: | |
temp_dict = { | |
"weight": round(att[1], 2), | |
"lenght": len(pipeline.tokenizer.tokenize(f'{small_chank},')), | |
"prompt": f'{small_chank},' | |
} | |
global_attention_chanks.append(temp_dict) | |
max_tokens = pipeline.tokenizer.model_max_length - 2 | |
global_prompt_chanks = [] | |
current_list = [] | |
current_length = 0 | |
for item in global_attention_chanks: | |
if current_length + item['lenght'] > max_tokens: | |
global_prompt_chanks.append(current_list) | |
current_list = [[item['prompt'], item['weight']]] | |
current_length = item['lenght'] | |
else: | |
if not current_list: | |
current_list.append([item['prompt'], item['weight']]) | |
else: | |
if item['weight'] != current_list[-1][1]: | |
current_list.append([item['prompt'], item['weight']]) | |
else: | |
current_list[-1][0] += f" {item['prompt']}" | |
current_length += item['lenght'] | |
if current_list: | |
global_prompt_chanks.append(current_list) | |
if only_convert_string: | |
return ' '.join([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks]) | |
return merge_embeds([prompt_attention_to_invoke_prompt(i) for i in global_prompt_chanks], compel) | |
def add_comma_after_pattern_ti(text): | |
pattern = re.compile(r'\b\w+_\d+\b') | |
modified_text = pattern.sub(lambda x: x.group() + ',', text) | |
return modified_text | |
def save_image(img): | |
path = "./tmp/" | |
# Check if the input is a string (file path) and load the image if it is | |
if isinstance(img, str): | |
img = Image.open(img) # Load the image from the file path | |
# Ensure the Hugging Face path exists locally | |
if not os.path.exists(path): | |
os.makedirs(path) | |
# Generate a unique filename | |
unique_name = str(uuid.uuid4()) + ".webp" | |
unique_name = os.path.join(path, unique_name) | |
# Convert the image to WebP format | |
webp_img = img.convert("RGB") # Ensure the image is in RGB mode | |
# Save the image in WebP format with high quality | |
webp_img.save(unique_name, "WEBP", quality=90) | |
# Open the saved WebP file and return it as a PIL Image object | |
with Image.open(unique_name) as webp_file: | |
webp_image = webp_file.copy() | |
return unique_name |