Spaces:
Runtime error
Runtime error
File size: 8,105 Bytes
4ba3b33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
"""
Problem:
Nt3awnou's platform collects raw data filled manually by users (people in need).
Among this data is the user's localisation.
The localisation is a text input that is not standardized:
i.e. a user can input a single or multiple locations
(either douars/provinces/communes/regions or all combined),
in arabic or latin, with misspellings etc.
This doesn't help in visualization or in statistics
where localisations can be redundant because they were written in different manners.
Examples
```
دوار تجكَالت
ابرداتن ازكور
خزامة
Tansgharte
دوار امندار
Douar Essour Tidrara Aghwatim Tahnaouet Al Haouz
دوار تكاديرت
Douar Essour tidrara- aghouatine- Tahanaout-El Haouz
```
Solution:
We collected a reference dataset that contains all douar names (arabic and latin)
with their corresponding regions, communes and provinces.
We developed methods using fuzzy matching and phonetics
to map the user's localisation to the closest match in the reference dataset
"""
from typing import Tuple
from pyphonetics import RefinedSoundex, Metaphone
import math
import difflib
import re
EPICENTER_LOCATION = [31.12210171476489, -8.42945837915193]
certainty_threshold = 1
def extract_ngrams(text, n):
"""
A function that returns a list of n-grams from a text
"""
ngrams = []
if n < 1 or n > len(text):
return ngrams # Return an empty list if n is invalid
# Iterate through the text and extract n-grams
for i in range(len(text) - n + 1):
ngram = text[i:i + n]
ngrams.append(' '.join(ngram))
return ngrams
def get_phonetics_distance(w1, w2):
"""
A function that calculates levenhstein distance between phonetics
representation of two words: add error term to the score
"""
rs = RefinedSoundex()
mt = Metaphone()
d1 = mt.distance(w1, w2, metric='levenshtein')
d2 = rs.distance(w1, w2, metric='levenshtein')
res = (d1 + d2) / 2 + 0.05
return res
def get_top_n_phonetics_matches(
w: str, ref_words: list, threshold=1, top_n=1) -> list[Tuple]:
"""
A function that returns the top_n closest words to w from ref_words
for which distance <= threshold
using phonetical representation
"""
if not w:
return list()
distances = {x: get_phonetics_distance(w, x) for x in ref_words}
selected_words = {x: d for x, d in distances.items() if d<=threshold}
sorted_d = dict(sorted(selected_words.items(), key=lambda item: item[1]))
return list(sorted_d.items())[:top_n]
def get_geometric_distance(lat1: float, lon1: float, lat2: float, lon2: float) -> float:
"""
A function that returns the distance between two points on earth
using the haversine formula
"""
dlon = math.radians(lon2 - lon1)
dlat = math.radians(lat2 - lat1)
a0 = (math.sin(dlat / 2)) ** 2 + math.cos(math.radians(lat1))
a = a0 * math.cos(math.radians(lat2)) * (math.sin(dlon / 2)) ** 2
c = 2 * math.atan2(math.sqrt(a), math.sqrt(1 - a))
distance = 6371 * c
return distance
def are_village_names_similar(village_a: str, village_b: str) -> float:
"""
A function that returns True if the two villages
are similar using strict fuzzy matching
"""
if difflib.SequenceMatcher(None, village_a, village_b).ratio() >= 0.90:
return True
return False
def get_uncertainty_range(input_dict: dict, threshold: float) -> list:
"""
A function that returns a list of tuples of the closest matches
"""
if len(input_dict)<=1:
return input_dict
# sort by distance
sorted_items = sorted(input_dict.items(), key=lambda item: item[1][1])
data = {key: value for key, value in sorted_items}
# Iterate through the keys in the dictionary
keys = list(data.keys())
min_key = keys[0]
min_value = data[min_key][1]
# Initialize a list to store the result tuples
result = {f"{min_key}":data[min_key]}
for j in range(1, len(keys)):
key2 = keys[j]
value2 = data[key2][1]
# Calculate the absolute difference between the float values
difference = abs(min_value - value2)
# If the difference is less than the threshold, add the tuple to the result
if difference <= threshold:
result[key2] = data[key2]
else:
break
return result
def match_word(w, ref_dict, select_one_match=False):
"""
A function that returns the closest match of w from ref_dict
using phonetical representation and fuzzy matching
"""
w = w.strip().upper()
if len(w)==0:
return {}
else:
closest_ref_w = dict()
use_phonetics = True
for category, names in ref_dict.items():
# check exact matching
if w in names:
use_phonetics = False
closest_ref_w[category] = (w, 0)
break
# check textual similarity (fuzzy matching)
sim = list(map(lambda x:are_village_names_similar(w,x), names))
similar_names = [names[i] for i in range(len(names)) if sim[i]==True]
if similar_names:
use_phonetics = False
closest_ref_w[category] = (similar_names[0], 0.01) if select_one_match else list(map(lambda x:(x, 0.01), similar_names))
# if no similar name was found check phonetical similarity
else:
res = get_top_n_phonetics_matches(w, names, threshold=2, top_n=1)
if res:
closest_ref_w[category] = res[0] # get closest match
if closest_ref_w and use_phonetics:
if not select_one_match:
closest_ref_w = get_uncertainty_range(closest_ref_w, certainty_threshold)
else:
k, v = min(closest_ref_w.items(), key=lambda x: x[1][1])
closest_ref_w = {k: v}
return closest_ref_w
def parse_and_map_localisation(text: str, ref_dict: dict, select_one_match: bool=True):
"""
A function that parses text containing users localisation
and returns the closest matches per categoty from ref_dict
Example:
input = COMMUNE MZODA : DOUARS : TOUKHRIBIN –TLAKEMT - COMMUNE IMINDOUNITE : DOUAR AZARZO
output = {'commune_fr': ('IMINDOUNIT', 0.01), 'nom_fr': ('TOUKHRIBINE', 0.01)}
"""
toxic = r"\bدوار|مصلى|\(|\)|douars?|communes?|cercles?|provinces?|villes?|regions?|caidate?|and|جماعة|\b|:|-|\d"
text = re.sub(toxic, '', text.lower())
regex_pattern = r"\|| |\.|,|/|et |و "
tokens = re.split(regex_pattern, text.replace('-', ' '))
filtered_tokens = [s for s in tokens if s.strip() != '']
ngrams_mapping = {}
for n in range(1, len(filtered_tokens)+1):
# generate ngrams
ngrams = extract_ngrams(filtered_tokens, n)
# init dict with ngram mapping
mapping_ngram = {}
# generate a mapping for the ngram with argmin matches
for tok in ngrams:
res = match_word(tok, ref_dict, select_one_match=select_one_match)
if not res:
continue
min_k, min_v = min(res.items(), key=lambda x:x[1][1])
# if min_k in previous tokens, then choose the min, else add it to mapping
if min_k in mapping_ngram:
saved_match, saved_distance = mapping_ngram[min_k]
if saved_distance > min_v[1]:
mapping_ngram[min_k] = min_v
else:
continue
else:
mapping_ngram[min_k] = min_v
ngrams_mapping[n] = mapping_ngram
# first squeeze dict s.t. one match remains per category
categories = ref_dict.keys()
result = {}
for _, inner_dict in ngrams_mapping.items():
for k in categories:
# Check if the key exists in the inner dictionary
if k in inner_dict:
current_match, current_val = inner_dict[k]
if k in result:
previous_match, previous_val = result[k]
if current_val < previous_val:
result[k] = (current_match, current_val)
else:
result[k] = (current_match, current_val)
# then, discard matches with a high distance from min (set 0.5+min_d as threshold)
thresh = min(result.values(), key=lambda x:x[1])[1] + 0.5
output = {k: v_d for k, v_d in result.items() if v_d[1]<=thresh}
return output |