nouamanetazi's picture
nouamanetazi HF staff
quick fixes
0b486c6
raw
history blame
15.5 kB
import os
import time
from datetime import datetime
import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium
from src.text_content import (
COLOR_MAPPING,
CREDITS_TEXT,
HEADERS_MAPPING,
ICON_MAPPING,
INTRO_TEXT_AR,
INTRO_TEXT_EN,
INTRO_TEXT_FR,
LOGO,
REVIEW_TEXT,
SLOGAN,
)
from src.utils import add_latlng_col, init_map, parse_gg_sheet, is_request_in_list, marker_request
TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)
# Initialize Streamlit Config
st.set_page_config(
layout="wide",
initial_sidebar_state="collapsed",
page_icon="🤝",
page_title="Nt3awnou نتعاونو",
)
# Initialize States
if "sleep_time" not in st.session_state:
st.session_state.sleep_time = 2
if "auto_refresh" not in st.session_state:
st.session_state.auto_refresh = False
auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
if auto_refresh:
number = st.sidebar.number_input(
"Refresh rate in seconds", value=st.session_state.sleep_time
)
st.session_state.sleep_time = number
# Streamlit functions
def display_interventions(interventions_df):
"""Display NGO interventions on the map"""
for index, row in interventions_df.iterrows():
village_status = row[interventions_df.columns[7]]
if (
row[interventions_df.columns[5]]
== "Intervention prévue dans le futur / Planned future intervention"
):
# future intervention
color_mk = "pink"
status = "Planned ⌛"
elif (
row[interventions_df.columns[5]]
!= "Intervention prévue dans le futur / Planned future intervention"
and village_status
!= "Critique, Besoin d'aide en urgence / Critical, in urgent need of help"
):
# past intervention and village not in a critical condition
color_mk = "green"
status = "Done ✅"
else:
color_mk = "darkgreen"
status = "Partial ⚠️"
intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
org = row[interventions_df.columns[1]]
city = row[interventions_df.columns[9]]
date = row[interventions_df.columns[4]]
population = row[interventions_df.columns[11]]
intervention_info = f"<b>Intervention Status:</b> {status}<br><b>Village Status:</b> {village_status.split('/')[0]}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>Population:</b> {population}<br><b>📅 Date:</b> {date}"
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=city,
popup=folium.Popup(intervention_info, max_width=300),
icon=folium.Icon(color=color_mk),
))
def show_requests(filtered_df):
"""Display victim requests on the map"""
for index, row in filtered_df.iterrows():
request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
displayed_request = marker_request(request_type)
long_lat = row[
"هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
]
maps_url = f"https://maps.google.com/?q={long_lat}"
# we display all requests in popup text and use the first one for the icon/color
display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
icon_name = ICON_MAPPING.get(displayed_request, "info-sign")
if row["latlng"] is None:
continue
fg.add_child(folium.Marker(
location=row["latlng"],
tooltip=row[" لأي جماعة / قيادة / دوار تنتمون ؟"]
if not pd.isna(row[" لأي جماعة / قيادة / دوار تنتمون ؟"])
else None,
popup=folium.Popup(display_text, max_width=300),
icon=folium.Icon(
color=COLOR_MAPPING.get(displayed_request, "blue"), icon=icon_name
),
))
def display_google_sheet_tables(data_url):
"""Display the google sheet tables for requests and interventions"""
st.markdown(
f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""",
unsafe_allow_html=True,
)
def display_dataframe(df, drop_cols, data_url, search_id=True, status=False, for_help_requests=False):
"""Display the dataframe in a table"""
col_1, col_2 = st.columns([1, 1])
with col_1:
query = st.text_input(
"🔍 Search for information / بحث عن المعلومات",
key=f"search_requests_{int(search_id)}",
)
with col_2:
if search_id:
id_number = st.number_input(
"🔍 Search for an id / بحث عن رقم",
min_value=0,
max_value=len(filtered_df),
value=0,
step=1,
)
if status:
selected_status = st.selectbox(
"🗓️ Status / حالة",
["all / الكل", "Done / تم", "Planned / مخطط لها"],
key="status",
)
if query:
# Filtering the dataframe based on the query
mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
display_df = df[mask]
else:
display_df = df
display_df = display_df.drop(drop_cols, axis=1)
if search_id and id_number:
display_df = display_df[display_df["id"] == id_number]
if status:
target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
if selected_status == "Done / تم":
display_df = display_df[
display_df[target] == "Intervention déjà passée / Past intevention"
]
elif selected_status == "Planned / مخطط لها":
display_df = display_df[
display_df[target] != "Intervention déjà passée / Past intevention"
]
st.dataframe(display_df, height=500)
st.markdown(
f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
)
# if we want to check hidden contact information
if for_help_requests:
st.markdown(
"We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at [email protected]",
)
st.markdown(
"""
<div style="text-align: left;">
<a href="mailto:[email protected]">[email protected]</a> نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على
</div>
""",
unsafe_allow_html=True,
)
def id_review_submission():
"""Id review submission form"""
st.subheader("🔍 Review of requests")
st.markdown(REVIEW_TEXT)
id_to_review = st.number_input(
"Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
)
reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
if st.button("Submit / أرسل"):
if reason_for_review == "":
st.error("Please enter a reason / الرجاء إدخال سبب")
else:
filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
with open(filename, "w") as f:
f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
api.upload_file(
path_or_fileobj=filename,
path_in_repo=filename,
repo_id="nt3awnou/review_requests",
repo_type="dataset",
)
st.success(
"Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
)
# Logo and Title
st.markdown(LOGO, unsafe_allow_html=True)
# st.title("Nt3awnou نتعاونو")
st.markdown(SLOGAN, unsafe_allow_html=True)
# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column=12)
m = init_map()
fg = folium.FeatureGroup(name="Markers")
# Selection of requests
options = [
"إغاثة",
"مساعدة طبية",
"مأوى",
"طعام وماء",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []
st.markdown(
"👉 **Choose request type | Choissisez le type de demande | اختر نوع الطلب**"
)
col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4])
cols = [col1, col2, col3, col4, col5]
for i, option in enumerate(options):
checked = cols[i].checkbox(HEADERS_MAPPING[option], value=True)
if checked:
selected_options.append(option)
df["id"] = df.index
# keep rows with at least one request in selected_options
filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].apply(
lambda x: is_request_in_list(x, selected_options)
)]
# Selection of interventions
show_interventions = st.checkbox(
"Display Interventions | Afficher les interventions | عرض عمليات المساعدة",
value=True,
)
# Categories of villages
st.markdown(
"👉 **State of villages visited by NGOs| Etat de villages visités par les ONGs | وضعية القرى التي زارتها الجمعيات**",
unsafe_allow_html=True,
)
# use checkboxes
col_1, col_2, col_3 = st.columns([1, 1, 1])
critical_villages = col_1.checkbox(
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة",
value=True,
)
partially_satisfied_villages = col_2.checkbox(
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات",
value=True,
)
fully_satisfied_villages = col_3.checkbox(
"✅ Fully served / تمت المساعدة بشكل كامل",
value=True,
)
selected_village_types = []
if critical_villages:
selected_village_types.append(
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة"
)
if partially_satisfied_villages:
selected_village_types.append(
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات"
)
if fully_satisfied_villages:
selected_village_types.append("✅ Fully served / تمت المساعدة بشكل كامل")
status_mapping = {
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة": "Critique, Besoin d'aide en urgence / Critical, in urgent need of help",
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات": "Partiellement satisfait / Partially Served",
"✅ Fully served / تمت المساعدة بشكل كامل": "Entièrement satisfait / Fully served",
}
selected_statuses = [status_mapping[status] for status in selected_village_types]
if show_interventions:
interventions_df = interventions_df.loc[
interventions_df[
"Etat de la région actuel | Current situation of the area "
].isin(selected_statuses)
]
display_interventions(interventions_df)
# Show requests
show_requests(filtered_df)
st_folium(m, use_container_width=True, returned_objects=[], feature_group_to_add=fg, key="map")
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
with tab_en:
st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True)
with tab_ar:
st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True)
with tab_fr:
st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True)
# Requests table
st.divider()
st.subheader("📝 **Table of requests / جدول الطلبات**")
drop_cols = [
"(عند الامكان) رقم هاتف شخص موجود في عين المكان",
"الرجاء الضغط على الرابط التالي لمعرفة موقعك إذا كان متاحا",
"GeoStamp",
"GeoCode",
"GeoAddress",
"Status",
"id",
]
display_dataframe(filtered_df, drop_cols, REQUESTS_URL, search_id=True, for_help_requests=True)
# Interventions table
st.divider()
st.subheader("📝 **Table of interventions / جدول التدخلات**")
display_dataframe(
interventions_df,
[], # We show NGOs contact information
INTERVENTIONS_URL,
search_id=False,
status=True,
for_help_requests=False,
)
# Submit an id for review
st.divider()
id_review_submission()
# Donations can be made to the gouvernmental fund under the name
st.divider()
st.subheader("📝 **Donations / التبرعات / Dons**")
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
with tab_en:
st.markdown(
"""
<div style="text-align: center;">
<h4>The official bank account dedicated to tackle the consequences of the earthquake is:</h4>
<b>Account number:</b>
<h2>126</h2>
<b>RIB:</b> 001-810-0078000201106203-18
<br>
<b>For the money transfers coming from outside Morocco</b>
<br>
<b>IBAN:</b> MA64001810007800020110620318
<br>
""",
unsafe_allow_html=True,
)
with tab_ar:
st.markdown(
"""
<div style="text-align: center;">
<h4>الحساب البنكي الرسمي المخصص لمواجهة عواقب الزلزال</h4>
<b>رقم الحساب</b>
<h2>126</h2>
<b>RIB:</b> 001-810-0078000201106203-18
<br>
<b>للتحويلات القادمة من خارج المغرب</b>
<br>
<b>IBAN:</b> MA64001810007800020110620318
<br>
</div>
""",
unsafe_allow_html=True,
)
with tab_fr:
st.markdown(
"""
<div style="text-align: center;">
<h4>Le compte bancaire officiel dédié à la lutte contre les conséquences du séisme est le suivant:</h4>
<b>Numéro de compte:</b>
<h2>126</h2>
<b>RIB:</b> 001-810-0078000201106203-18
<br>
<b>Pour les transferts d'argent en provenance de l'étranger</b>
<br>
<b>IBAN:</b> MA64001810007800020110620318
<br>
""",
unsafe_allow_html=True,
)
# Credits
st.markdown(
CREDITS_TEXT,
unsafe_allow_html=True,
)
if auto_refresh:
time.sleep(number)
st.experimental_rerun()