loubnabnl's picture
loubnabnl HF staff
use checkboxes instead
8cfd7ce
raw
history blame
13.3 kB
import os
import time
from datetime import datetime
import folium
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi
from streamlit_folium import st_folium
from src.text_content import (
COLOR_MAPPING,
CREDITS_TEXT,
HEADERS_MAPPING,
ICON_MAPPING,
INTRO_TEXT_AR,
INTRO_TEXT_EN,
INTRO_TEXT_FR,
LOGO,
REVIEW_TEXT,
SLOGAN,
)
from src.utils import add_latlng_col, init_map, parse_gg_sheet
TOKEN = os.environ.get("HF_TOKEN", None)
REQUESTS_URL = "https://docs.google.com/spreadsheets/d/1gYoBBiBo1L18IVakHkf3t1fOGvHWb23loadyFZUeHJs/edit#gid=966953708"
INTERVENTIONS_URL = "https://docs.google.com/spreadsheets/d/1eXOTqunOWWP8FRdENPs4cU9ulISm4XZWYJJNR1-SrwY/edit#gid=2089222765"
api = HfApi(TOKEN)
# Initialize Streamlit Config
st.set_page_config(
layout="wide",
initial_sidebar_state="collapsed",
page_icon="🤝",
page_title="Nt3awnou نتعاونو",
)
# Initialize States
if "sleep_time" not in st.session_state:
st.session_state.sleep_time = 2
if "auto_refresh" not in st.session_state:
st.session_state.auto_refresh = False
auto_refresh = st.sidebar.checkbox("Auto Refresh?", st.session_state.auto_refresh)
if auto_refresh:
number = st.sidebar.number_input(
"Refresh rate in seconds", value=st.session_state.sleep_time
)
st.session_state.sleep_time = number
# Streamlit functions
def display_interventions(interventions_df, m):
"""Display NGO interventions on the map"""
for index, row in interventions_df.iterrows():
village_status = row[interventions_df.columns[7]]
if (
row[interventions_df.columns[5]]
== "Intervention prévue dans le futur / Planned future intervention"
):
# future intervention
color_mk = "pink"
status = "Planned ⌛"
elif (
row[interventions_df.columns[5]]
!= "Intervention prévue dans le futur / Planned future intervention"
and village_status
!= "Critique, Besoin d'aide en urgence / Critical, in urgent need of help"
):
# past intervention and village not in a critical condition
color_mk = "green"
status = "Done ✅"
else:
color_mk = "darkgreen"
status = "Partial ⚠️"
intervention_type = row[interventions_df.columns[6]].split("/")[0].strip()
org = row[interventions_df.columns[1]]
city = row[interventions_df.columns[9]]
date = row[interventions_df.columns[4]]
population = row[interventions_df.columns[11]]
intervention_info = f"<b>Intervention Status:</b> {status}<br><b>Village Status:</b> {village_status.split('/')[0]}<br><b>Org:</b> {org}<br><b>Intervention:</b> {intervention_type}<br><b>Population:</b> {population}<br><b>📅 Date:</b> {date}"
if row["latlng"] is None:
continue
folium.Marker(
location=row["latlng"],
tooltip=city,
popup=folium.Popup(intervention_info, max_width=300),
icon=folium.Icon(color=color_mk),
).add_to(m)
def show_requests(filtered_df, m):
"""Display victim requests on the map"""
for index, row in filtered_df.iterrows():
request_type = row["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"]
long_lat = row[
"هل يمكنك تقديم الإحداثيات الدقيقة للموقع؟ (ادا كنت لا توجد بعين المكان) متلاً \n31.01837503440344, -6.781405948842175"
]
maps_url = f"https://maps.google.com/?q={long_lat}"
display_text = f'<b>Request Type:</b> {request_type}<br><b>Id:</b> {row["id"]}<br><a href="{maps_url}" target="_blank" rel="noopener noreferrer"><b>Google Maps</b></a>'
icon_name = ICON_MAPPING.get(request_type, "info-sign")
if row["latlng"] is None:
continue
folium.Marker(
location=row["latlng"],
tooltip=row[" لأي جماعة / قيادة / دوار تنتمون ؟"]
if not pd.isna(row[" لأي جماعة / قيادة / دوار تنتمون ؟"])
else None,
popup=folium.Popup(display_text, max_width=300),
icon=folium.Icon(
color=COLOR_MAPPING.get(request_type, "blue"), icon=icon_name
),
).add_to(m)
def display_google_sheet_tables(data_url):
"""Display the google sheet tables for requests and interventions"""
st.markdown(
f"""<iframe src="{data_url}" width="100%" height="600px"></iframe>""",
unsafe_allow_html=True,
)
def display_dataframe(df, drop_cols, data_url, search_id=True, status=False):
"""Display the dataframe in a table"""
col_1, col_2 = st.columns([1, 1])
with col_1:
query = st.text_input(
"🔍 Search for information / بحث عن المعلومات",
key=f"search_requests_{int(search_id)}",
)
with col_2:
if search_id:
id_number = st.number_input(
"🔍 Search for an id / بحث عن رقم",
min_value=0,
max_value=len(filtered_df),
value=0,
step=1,
)
if status:
selected_status = st.selectbox(
"🗓️ Status / حالة",
["all / الكل", "Done / تم", "Planned / مخطط لها"],
key="status",
)
if query:
# Filtering the dataframe based on the query
mask = df.apply(lambda row: row.astype(str).str.contains(query).any(), axis=1)
display_df = df[mask]
else:
display_df = df
display_df = display_df.drop(drop_cols, axis=1)
if search_id and id_number:
display_df = display_df[display_df["id"] == id_number]
if status:
target = "Pouvez-vous nous préciser si vous êtes déjà intervenus ou si vous prévoyez de le faire | Tell us if you already made the intervention, or if you're planning to do it"
if selected_status == "Done / تم":
display_df = display_df[
display_df[target] == "Intervention déjà passée / Past intevention"
]
elif selected_status == "Planned / مخطط لها":
display_df = display_df[
display_df[target] != "Intervention déjà passée / Past intevention"
]
st.dataframe(display_df, height=500)
st.markdown(
f"To view the full Google Sheet for advanced filtering go to: {data_url} **لعرض الورقة كاملة، اذهب إلى**"
)
# if we want to check hidden contact information
st.markdown(
f"We are hiding contact information to protect the privacy of the victims. If you are an NGO and want to contact the victims, please contact us at [email protected]",
)
# arabic needs rtl
st.markdown(
f"""
<div style="text-align: left;">
<a href="mailto:[email protected]">[email protected]</a> نحن نخفي معلومات الاتصال لحماية خصوصية الضحايا. إذا كنت جمعية وتريد الاتصال بالضحايا، يرجى الاتصال بنا على
</div>
""",
unsafe_allow_html=True,
)
def id_review_submission():
"""Id review submission form"""
st.subheader("🔍 Review of requests")
st.markdown(REVIEW_TEXT)
id_to_review = st.number_input(
"Enter id / أدخل الرقم", min_value=0, max_value=len(df), value=0, step=1
)
reason_for_review = st.text_area("Explain why / أدخل سبب المراجعة")
if st.button("Submit / أرسل"):
if reason_for_review == "":
st.error("Please enter a reason / الرجاء إدخال سبب")
else:
filename = f"review_id_{id_to_review}_{datetime.now().strftime('%Y-%m-%d_%H-%M-%S')}.txt"
with open(filename, "w") as f:
f.write(f"id: {id_to_review}, explanation: {reason_for_review}\n")
api.upload_file(
path_or_fileobj=filename,
path_in_repo=filename,
repo_id="nt3awnou/review_requests",
repo_type="dataset",
)
st.success(
"Submitted at https://huggingface.co/datasets/nt3awnou/review_requests/ تم الإرسال"
)
# Logo and Title
st.markdown(LOGO, unsafe_allow_html=True)
# st.title("Nt3awnou نتعاونو")
st.markdown(SLOGAN, unsafe_allow_html=True)
# Load data and initialize map with plugins
df = parse_gg_sheet(REQUESTS_URL)
df = add_latlng_col(df, process_column=15)
interventions_df = parse_gg_sheet(INTERVENTIONS_URL)
interventions_df = add_latlng_col(interventions_df, process_column=12)
m = init_map()
# Selection of requests
options = [
"إغاثة",
"مساعدة طبية",
"مأوى",
"طعام وماء",
"مخاطر (تسرب الغاز، تلف في الخدمات العامة...)",
]
selected_options = []
st.markdown(
"👉 **Choose request type | Choissisez le type de demande | اختر نوع الطلب**"
)
col1, col2, col3, col4, col5 = st.columns([2, 3, 2, 3, 4])
cols = [col1, col2, col3, col4, col5]
for i, option in enumerate(options):
checked = cols[i].checkbox(HEADERS_MAPPING[option], value=True)
if checked:
selected_options.append(option)
df["id"] = df.index
filtered_df = df[df["ما هي احتياجاتك؟ (أضفها إذا لم يتم ذكرها)"].isin(selected_options)]
selected_headers = [HEADERS_MAPPING[request] for request in selected_options]
# Selection of interventions
show_interventions = st.checkbox(
"Display Interventions | عرض عمليات المساعدة | Afficher les interventions",
value=True,
)
# Categories of villages
st.markdown(
"👉 **State of villages visited by NGOs| Etat de villages visités par les ONGs | اختر نوع القرى التي زارتها الجمعيات**",
unsafe_allow_html=True,
)
# use checkboxes
col_1, col_2, col_3 = st.columns([1, 1, 1])
critical_villages = col_1.checkbox(
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة",
value=True,
)
partially_satisfied_villages = col_2.checkbox(
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات",
value=True,
)
fully_satisfied_villages = col_3.checkbox(
"✅ Fully served / تمت المساعدة بشكل كامل",
value=True,
)
selected_village_types = []
if critical_villages:
selected_village_types.append(
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة"
)
if partially_satisfied_villages:
selected_village_types.append(
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات"
)
if fully_satisfied_villages:
selected_village_types.append("✅ Fully served / تمت المساعدة بشكل كامل")
status_mapping = {
"🚨 Critical, in urgent need of help / وضع حرج، في حاجة عاجلة للمساعدة": "Critique, Besoin d'aide en urgence / Critical, in urgent need of help",
"⚠️ Partially served / مساعدة جزئية، بحاجة للمزيد من التدخلات": "Partiellement satisfait / Partially Served",
"✅ Fully served / تمت المساعدة بشكل كامل": "Entièrement satisfait / Fully served",
}
selected_statuses = [status_mapping[status] for status in selected_village_types]
if show_interventions:
interventions_df = interventions_df.loc[
interventions_df[
"Etat de la région actuel | Current situation of the area "
].isin(selected_statuses)
]
display_interventions(interventions_df, m)
# Show requests
show_requests(filtered_df, m)
st_data = st_folium(m, use_container_width=True)
tab_ar, tab_en, tab_fr = st.tabs(["العربية", "English", "Français"])
with tab_en:
st.markdown(INTRO_TEXT_EN, unsafe_allow_html=True)
with tab_ar:
st.markdown(INTRO_TEXT_AR, unsafe_allow_html=True)
with tab_fr:
st.markdown(INTRO_TEXT_FR, unsafe_allow_html=True)
# Requests table
st.divider()
st.subheader("📝 **Table of requests / جدول الطلبات**")
drop_cols = [
"(عند الامكان) رقم هاتف شخص موجود في عين المكان",
"الرجاء الضغط على الرابط التالي لمعرفة موقعك إذا كان متاحا",
"GeoStamp",
"GeoCode",
"GeoAddress",
"Status",
"id",
]
display_dataframe(filtered_df, drop_cols, REQUESTS_URL, search_id=True)
# Interventions table
st.divider()
st.subheader("📝 **Table of interventions / جدول التدخلات**")
display_dataframe(
interventions_df,
[], # We show NGOs contact information
INTERVENTIONS_URL,
search_id=False,
status=True,
)
# Submit an id for review
st.divider()
id_review_submission()
# Credits
st.markdown(
CREDITS_TEXT,
unsafe_allow_html=True,
)
if auto_refresh:
time.sleep(number)
st.experimental_rerun()