Spaces:
Sleeping
Sleeping
import streamlit as st | |
import pandas as pd | |
import re | |
st.set_page_config(layout='wide') | |
def load_data(): | |
return pd.read_csv(filepath_or_buffer='./data.csv') | |
df = load_data() | |
if 'idx' not in st.session_state: | |
st.session_state.idx = 0 | |
st.markdown("<h1 style='text-align: center;'>Investigation Legal Documents Dataset Checker</h1>", unsafe_allow_html=True) | |
col_1, col_2, col_3, col_4, col_5, col_6, col_7, col_8, col_9, col_10 = st.columns([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) | |
btn_prev = col_1.button(label='Previous sample', use_container_width=True) | |
btn_next = col_2.button(label='Next sample', use_container_width=True) | |
btn_save = col_3.button(label='Save changes', use_container_width=True) | |
if btn_prev: | |
if st.session_state.idx > 0: | |
st.session_state.idx -= 1 | |
if btn_next: | |
if st.session_state.idx < len(df) - 1: | |
st.session_state.idx += 1 | |
st.markdown(f"<h3 style='text-align: center;'>Sample: {st.session_state.idx+1}/{len(df)}</h3>", unsafe_allow_html=True) | |
context = st.text_area(label='Your context: ', value=df['contexts'][st.session_state.idx], height=300) | |
question = st.text_area(label='Your question: ', value=df['questions'][st.session_state.idx], height=100) | |
answer = st.text_area(label='Your answer: ', value=df['answers'][st.session_state.idx], height=100) | |
if answer.strip() and context.strip(): | |
highlighted_context = re.sub(re.escape(answer), "<mark>" + answer + "</mark>", context, flags=re.IGNORECASE) | |
st.markdown(highlighted_context, unsafe_allow_html=True) | |
if btn_save: | |
df.loc[st.session_state.idx, 'contexts'] = context | |
df.loc[st.session_state.idx, 'questions'] = question | |
df.loc[st.session_state.idx, 'answers'] = answer | |
df.to_csv('./data.csv', index=False) | |