import pandas as pd import streamlit as st import re st.set_page_config(page_icon='🍃', page_title='MRC for Legal Document Dataset checker', layout='wide', initial_sidebar_state="collapsed") st.markdown("

Investigation Legal Dataset checker for Machine Reading Comprehension

", unsafe_allow_html=True) df = pd.read_csv(filepath_or_buffer='./Truong-Phuc/MRC_Dataset_Checker/raw/main/Legal_AbstractiveA.csv') if 'idx' not in st.session_state: st.session_state.idx = 0 st.markdown(f"

Sample {st.session_state.idx + 1}/{len(df)}

", unsafe_allow_html=True) col_1, col_2, col_3, col_4, col_5, col_6, col_7, col_8, col_9, col_10 = st.columns([1, 1, 1, 1, 1, 1, 1, 1, 1, 1]) btn_previous = col_1.button(label=':arrow_backward: Previous sample', use_container_width=True) btn_next = col_2.button(label='Next sample :arrow_forward:', use_container_width=True) btn_save = col_3.button(label=':heavy_check_mark: Save change', use_container_width=True) if len(df) != 0: txt_context = st.text_area(height=300, label='Your context:', value=df['context'][st.session_state.idx]) txt_question = st.text_area(height=100, label='Your question:', value=df['question'][st.session_state.idx]) txt_answer = st.text_area(height=100, label='Your answer:', value=df['answer'][st.session_state.idx]) if txt_answer.strip() and txt_context.strip(): highlighted_context = re.sub(re.escape(txt_answer), "" + txt_answer + "", txt_context, flags=re.IGNORECASE) st.markdown(highlighted_context, unsafe_allow_html=True) if btn_previous: if st.session_state.idx > 0: st.session_state.idx -= 1 st.rerun() else: pass if btn_next: if st.session_state.idx <= (len(df) - 1): st.session_state.idx += 1 st.rerun() else: pass if btn_save: df['context'][st.session_state.idx] = txt_context df['question'][st.session_state.idx] = txt_question df['answer'][st.session_state.idx] = txt_answer df.to_csv(path_or_buf='./Truong-Phuc/MRC_Dataset_Checker/raw/main/Legal_AbstractiveA.csv', index=None)