Spaces:
Running
Running
import streamlit as st | |
import torch | |
from transformers import pipeline | |
st.set_page_config(page_title="Vietnamese Legal Question Answering", page_icon="🧊", layout="centered", initial_sidebar_state="collapsed") | |
def load_model(model_path): | |
device = 0 if torch.cuda.is_available() else -1 | |
question_answerer = pipeline("question-answering", model=model_path, device=device) | |
return question_answerer | |
def get_answer(model, context, question): | |
return model(context=context, question=question, max_answer_len=512) | |
if 'model' not in st.session_state: | |
st.session_state.model = load_model(model_path='./models/vi-mrc-large/model') | |
st.markdown("<h1 style='text-align: center;'>Vietnamese Legal Question Answering</h1>", unsafe_allow_html=True) | |
context = st.text_area(label='Vietnamese Legal Documents/context:', placeholder='Enter your Vietnamese legal document here...', height=300) | |
question = st.text_area(label='Question about this Vietnamese Legal Documents:', placeholder='Enter your question about this Vietnamese Legal Documents here...', height=100) | |
btn_answer = st.button(label='Answer') | |
if btn_answer: | |
answer = get_answer(model=st.session_state.model, context=context, question=question) | |
st.success(f"{answer['answer']}") | |