ViBidLawQA_v2.0 / app.py
ntphuc149's picture
Upload 26 files
5ba7685 verified
raw
history blame
8.78 kB
import gc
import time
import torch
import numpy as np
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForQuestionAnswering
st.set_page_config(page_title="ViBidLawQA - Hệ thống hỏi đáp trực tuyến luật Việt Nam", page_icon="./app/static/ai.png", layout="centered", initial_sidebar_state="expanded")
with open("./static/styles.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
if 'messages' not in st.session_state:
st.session_state.messages = []
st.markdown(f"""
<div class=logo_area>
<img src="./app/static/ai.png"/>
</div>
""", unsafe_allow_html=True)
st.markdown("<h2 style='text-align: center;'>ViBidLawQA_v2</h2>", unsafe_allow_html=True)
answering_method = st.sidebar.selectbox(options=['Extraction', 'Generation'], label='Chọn mô hình trả lời câu hỏi:', index=0)
context = st.sidebar.text_area(label='Nội dung văn bản pháp luật Việt Nam:', placeholder='Vui lòng nhập nội dung văn bản pháp luật Việt Nam tại đây...', height=500)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if answering_method == 'Generation' and 'aqa_model' not in st.session_state:
if 'eqa_model' and 'eqa_tokenizer' in st.session_state:
del st.session_state.eqa_model
del st.session_state.eqa_tokenizer
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print('Switching to generative model...')
print('Loading generative model...')
st.session_state.aqa_model = AutoModelForSeq2SeqLM.from_pretrained(pretrained_model_name_or_path='./models/AQA_model').to(device)
st.session_state.aqa_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path='./models/AQA_model')
if answering_method == 'Extraction' and 'eqa_model' not in st.session_state:
if 'aqa_model' and 'aqa_tokenizer' in st.session_state:
del st.session_state.aqa_model
del st.session_state.aqa_tokenizer
if torch.cuda.is_available():
torch.cuda.empty_cache()
gc.collect()
print('Switching to extraction model...')
print('Loading extraction model...')
st.session_state.eqa_model = AutoModelForQuestionAnswering.from_pretrained(pretrained_model_name_or_path='./models/EQA_model').to(device)
st.session_state.eqa_tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path='./models/EQA_model')
def get_abstractive_answer(context, question, max_length=1024, max_target_length=512):
inputs = st.session_state.aqa_tokenizer(question,
context,
max_length=max_length,
truncation='only_second',
padding='max_length',
return_tensors='pt')
outputs = st.session_state.aqa_model.generate(inputs=inputs['input_ids'].to(device),
attention_mask=inputs['attention_mask'].to(device),
max_length=max_target_length)
answer = st.session_state.aqa_tokenizer.decode(outputs[0], skip_special_tokens=True, clean_up_tokenization_space=True)
if not answer.endswith('.'):
answer += '.'
return answer
def generate_text_effect(answer):
words = answer.split()
for i in range(len(words)):
time.sleep(0.05)
yield " ".join(words[:i+1])
def get_extractive_answer(context, question, stride=20, max_length=256, n_best=50, max_answer_length=512):
inputs = st.session_state.eqa_tokenizer(question,
context,
max_length=max_length,
truncation='only_second',
stride=stride,
return_overflowing_tokens=True,
return_offsets_mapping=True,
padding='max_length')
for i in range(len(inputs['input_ids'])):
sequence_ids = inputs.sequence_ids(i)
offset = inputs['offset_mapping'][i]
inputs['offset_mapping'][i] = [
o if sequence_ids[k] == 1 else None for k, o in enumerate(offset)
]
input_ids = torch.tensor(inputs["input_ids"]).to(device)
attention_mask = torch.tensor(inputs["attention_mask"]).to(device)
with torch.no_grad():
outputs = st.session_state.eqa_model(input_ids=input_ids, attention_mask=attention_mask)
start_logits = outputs.start_logits.cpu().numpy()
end_logits = outputs.end_logits.cpu().numpy()
answers = []
for i in range(len(inputs["input_ids"])):
start_logit = start_logits[i]
end_logit = end_logits[i]
offsets = inputs["offset_mapping"][i]
start_indexes = np.argsort(start_logit)[-1 : -n_best - 1 : -1].tolist()
end_indexes = np.argsort(end_logit)[-1 : -n_best - 1 : -1].tolist()
for start_index in start_indexes:
for end_index in end_indexes:
if offsets[start_index] is None or offsets[end_index] is None:
continue
if end_index < start_index or end_index - start_index + 1 > max_answer_length:
continue
answer = {
"text": context[offsets[start_index][0] : offsets[end_index][1]],
"logit_score": start_logit[start_index] + end_logit[end_index],
}
answers.append(answer)
if len(answers) > 0:
best_answer = max(answers, key=lambda x: x["logit_score"])
return best_answer["text"]
else:
return ""
for message in st.session_state.messages:
if message['role'] == 'assistant':
avatar_class = "assistant-avatar"
message_class = "assistant-message"
avatar = './app/static/ai.png'
else:
avatar_class = "user-avatar"
message_class = "user-message"
avatar = './app/static/human.png'
st.markdown(f"""
<div class="{message_class}">
<img src="{avatar}" class="{avatar_class}" />
<div class="stMarkdown">{message['content']}</div>
</div>
""", unsafe_allow_html=True)
if prompt := st.chat_input(placeholder='Tôi có thể giúp được gì cho bạn?'):
st.markdown(f"""
<div class="user-message">
<img src="./app/static/human.png" class="user-avatar" />
<div class="stMarkdown">{prompt}</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'user', 'content': prompt})
message_placeholder = st.empty()
for _ in range(2):
for dots in ["●", "●●", "●●●"]:
time.sleep(0.2)
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.png" class="assistant-avatar" />
<div class="stMarkdown">{dots}</div>
</div>
""", unsafe_allow_html=True)
full_response = ""
if answering_method == 'Generation':
abs_answer = get_abstractive_answer(context=context, question=prompt)
for word in generate_text_effect(abs_answer):
full_response = word
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
else:
ext_answer = get_extractive_answer(context=context, question=prompt)
for word in generate_text_effect(ext_answer):
full_response = word
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}●</div>
</div>
""", unsafe_allow_html=True)
message_placeholder.markdown(f"""
<div class="assistant-message">
<img src="./app/static/ai.png" class="assistant-avatar" />
<div class="stMarkdown">{full_response}</div>
</div>
""", unsafe_allow_html=True)
st.session_state.messages.append({'role': 'assistant', 'content': full_response})