File size: 5,414 Bytes
491e087 2704216 491e087 2704216 491e087 2704216 491e087 2704216 491e087 2704216 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import streamlit as st
import pandas as pd
from plms.language_model import TransformersQG
import os
st.set_page_config(page_icon='🧪', page_title='ViQAG for Vietnamese Education', layout='wide', initial_sidebar_state="collapsed")
with open(r"./static/styles.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.markdown(f"""
<div class=logo_area>
<img src="./app/static/AlphaEdu_logo_trans.png"/>
</div>
""", unsafe_allow_html=True)
st.markdown("<h1 style='text-align: center;'>ViQAG: An Automate Question Answer Generation System for Vietnamese Education</h1>", unsafe_allow_html=True)
# =====================================================================================================
if 'output' not in st.session_state:
st.session_state.output = ''
def file_selector(folder_path=r'./Resources/'):
filenames = os.listdir(folder_path)
return filenames
filenames = file_selector()
def load_grades(file_name, folder_path=r'./Resources/'):
file_path = f"{folder_path}{file_name}"
df = pd.read_csv(file_path)
list_grades = df['grade'].drop_duplicates().values
return list_grades, df
def load_chapters(df, grade_name):
df_raw = df[df['grade'] == grade_name]
list_chapters = df_raw['chapter'].drop_duplicates().values
return list_chapters, df
def load_lessons(df, grade_name, chapter_name):
df_raw = df[(df['grade'] == grade_name) & (df['chapter'] == chapter_name)]
return df_raw['lesson'].drop_duplicates().values
def load_context(df, grade_name, chapter_name, lesson_name):
context = df[(df['grade'] == grade_name) & (df['chapter'] == chapter_name) & (df['lesson'] == lesson_name)]['context'].values
return '\n'.join([str(item) for item in context.tolist()])
def generateQA(context, model_path = 'shnl/vit5-vinewsqa-qg-ae'):
unique_qa_pairs = set()
model = TransformersQG(model=model_path, max_length=512)
output = model.generate_qa(context)
qa_pairs = ''
for item in output:
question, answer = item
if (question, answer) not in unique_qa_pairs:
qa_pairs += f'question: {question} \nanswer: {answer} [SEP] '
unique_qa_pairs.add((question, answer))
qa = '\n\n'.join(qa_pairs.split(' [SEP] '))
return qa
# =====================================================================================================
col_1, col_2, col_3, col_4 = st.columns(spec=[1, 1, 3, 4])
col_1.markdown("<h8 style='text-align: left; font-weight: normal'>Select your subject:</h8>", unsafe_allow_html=True)
subject = col_1.selectbox(label='Select your subject:', options=filenames, label_visibility='collapsed')
col_2.markdown("<h8 style='text-align: left; font-weight: normal'>Select your grade:</h8>", unsafe_allow_html=True)
list_grades, df = load_grades(file_name=subject)
grade = col_2.selectbox(label='Select your grade:', options=list_grades, label_visibility='collapsed')
col_3.markdown("<h8 style='text-align: left; font-weight: normal'>Select your chapter:</h8>", unsafe_allow_html=True)
list_chapters, df = load_chapters(df=df, grade_name=grade)
chapter = col_3.selectbox(label='Select your chapter:', options=list_chapters, label_visibility='collapsed')
col_4.markdown("<h8 style='text-align: left; font-weight: normal'>Select your lesson:</h8>", unsafe_allow_html=True)
lesson_names = load_lessons(df=df, grade_name=grade, chapter_name=chapter)
lesson = col_4.selectbox(label='Select your lesson:', options=lesson_names, label_visibility='collapsed')
col_11, col_21 = st.columns(spec=[8, 2])
col_11.markdown("<h8 style='text-align: left; font-weight: normal'>Paragraph related:</h8>", unsafe_allow_html=True)
context_values = load_context(df=df, grade_name=grade, chapter_name=chapter, lesson_name=lesson)
col_11.text_area(label='Paragraph related', label_visibility='collapsed', height=300, value=context_values)
col_21.markdown("<h8 style='text-align: left; font-weight: normal'>Choose question generation modes:</h8>", unsafe_allow_html=True)
col_21.checkbox(label='Question Answer Generation', value=True)
col_21.checkbox(label='Multiple Choice Question Generation (Coming soon)', disabled=True)
col_21.checkbox(label='Fill-in-the-Blank Question Generation (Coming soon)', disabled=True)
col_21.markdown("<h8 style='text-align: left; font-weight: normal'>Options:</h8>", unsafe_allow_html=True)
btn_show_answer = col_21.toggle(label='Show the answers', disabled=False)
btn_generate = col_21.button(label='Generate questions', use_container_width=True)
if btn_generate == True:
with st.spinner(text='Generating 10 pairs questions-answers. Please wait ...'):
st.session_state.output = generateQA(context=context_values)
if btn_show_answer:
if st.session_state.output != '':
st.markdown("<h8 style='text-align: left; font-weight: normal'>Your questions and answers has been generated:</h8>", unsafe_allow_html=True)
st.code(body=st.session_state.output, language='wiki')
else:
pass
else:
if st.session_state.output != '':
st.markdown("<h8 style='text-align: left; font-weight: normal'>Your questions and answers has been generated:</h8>", unsafe_allow_html=True)
output_no_answer = st.session_state.output.split(' [SEP] ')[0].split(', answer: ')[0].replace('question: ', '')
st.code(body=output_no_answer, language='wiki')
else:
pass |