ViQAG / plms /language_model.py
Truong-Phuc Nguyen
Upload 6 files
c8a708c verified
raw
history blame
29.5 kB
import os
import logging
import pickle
import re
import urllib
from itertools import chain
from typing import List, Dict
from multiprocessing import Pool
import numpy as np
from tqdm import tqdm
import torch
from torch.nn import functional
import transformers
from .exceptions import ExceedMaxLengthError, HighlightNotFoundError, AnswerNotFoundError
from .spacy_module import SpacyPipeline, VALID_METHODS
__all__ = ('TransformersQG', 'ADDITIONAL_SP_TOKENS', 'TASK_PREFIX', 'clean', 'internet_connection')
os.environ["TOKENIZERS_PARALLELISM"] = "false" # to turn off warning message
TASK_PREFIX = {
"ae": "extract answers",
"qg": "generate question",
"qag": "generate question and answer",
"qa": "answer question"
}
CE_IGNORE_INDEX = -100
ADDITIONAL_SP_TOKENS = {'hl': '<hl>'}
NUM_WORKERS = int(os.getenv('NUM_WORKERS', '0'))
PARALLEL_PROCESSING = bool(int(os.getenv('PARALLEL_PROCESSING', '0')))
DEFAULT_MODELS = {
'vi': 'VietAI/vit5-base'
}
def pickle_save(obj, path: str):
with open(path, "wb") as fp:
pickle.dump(obj, fp)
def pickle_load(path: str):
with open(path, "rb") as fp: # Unpickling
return pickle.load(fp)
def clean(string):
string = re.sub(r'\A\s*', '', string)
string = re.sub(r'\s*\Z', '', string)
if len(string) > 0:
return string
return None
def internet_connection(host='http://google.com'):
try:
urllib.request.urlopen(host)
return True
except:
return False
def load_language_model(model_name,
cache_dir: str = None,
use_auth_token: bool = False,
torch_dtype=None,
device_map: str = None,
low_cpu_mem_usage: bool = False):
""" load language model from huggingface model hub """
# tokenizer
local_files_only = not internet_connection()
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_name, cache_dir=cache_dir, local_files_only=local_files_only, use_auth_token=use_auth_token)
config = transformers.AutoConfig.from_pretrained(
model_name, local_files_only=local_files_only, cache_dir=cache_dir, use_auth_token=use_auth_token)
# model
if config.model_type == 't5': # T5 model requires T5ForConditionalGeneration class
model_class = transformers.T5ForConditionalGeneration.from_pretrained
elif config.model_type == 'mt5':
model_class = transformers.MT5ForConditionalGeneration.from_pretrained
elif config.model_type == 'bart':
model_class = transformers.BartForConditionalGeneration.from_pretrained
elif config.model_type == 'mbart':
model_class = transformers.MBartForConditionalGeneration.from_pretrained
elif config.model_type == 'switch_transformers':
model_class = transformers.SwitchTransformersForConditionalGeneration.from_pretrained
else:
raise ValueError(f'unsupported model type: {config.model_type}')
param = {'config': config, "local_files_only": local_files_only, "use_auth_token": use_auth_token,
"low_cpu_mem_usage": low_cpu_mem_usage, "cache_dir": cache_dir}
if torch_dtype is not None:
param['torch_dtype'] = torch_dtype
if device_map is not None:
param['device_map'] = device_map
model = model_class(model_name, **param)
# add new special tokens to the tokenizer and the model if they don't have it
tokenizer.add_special_tokens({'additional_special_tokens': list(ADDITIONAL_SP_TOKENS.values())})
model.resize_token_embeddings(len(tokenizer))
return tokenizer, model, config
def label_smoothed_loss(logits, labels, epsilon):
""" https://github.com/huggingface/transformers/blob/55bb4c06f7be141c6d895dbe1f11018dc8580b2d/src/transformers/trainer_pt_utils.py#L430 """
log_probs = - functional.log_softmax(logits, dim=-1)
if labels.dim() == log_probs.dim() - 1:
labels = labels.unsqueeze(-1)
padding_mask = labels.eq(CE_IGNORE_INDEX)
# In case the ignore_index is -100, the gather will fail, so we replace labels by 0. The padding_mask
# will ignore them in any case.
labels.clamp_min_(0)
nll_loss = log_probs.gather(dim=-1, index=labels)
nll_loss.masked_fill_(padding_mask, 0.0)
# works for fp16 input tensor too, by internally upcasting it to fp32
smoothed_loss = log_probs.sum(dim=-1, keepdim=True, dtype=torch.float32)
smoothed_loss.masked_fill_(padding_mask, 0.0)
# Take the mean over the label dimensions, then divide by the number of active elements (i.e. not-padded):
num_active_elements = padding_mask.numel() - padding_mask.long().sum()
nll_loss = nll_loss.sum() / num_active_elements
smoothed_loss = smoothed_loss.sum() / (num_active_elements * log_probs.shape[-1])
return (1 - epsilon) * nll_loss + epsilon * smoothed_loss
class Dataset(torch.utils.data.Dataset):
""" torch.utils.data.Dataset wrapper converting into tensor """
float_tensors = ['attention_mask']
def __init__(self, data: List):
self.data = data
def __len__(self):
return len(self.data)
def to_tensor(self, name, data):
if name in self.float_tensors:
return torch.tensor(data, dtype=torch.float32)
return torch.tensor(data, dtype=torch.long)
def __getitem__(self, idx):
return {k: self.to_tensor(k, v) for k, v in self.data[idx].items()}
class EncodePlus:
""" Wrapper of encode_plus for multiprocessing. """
def __init__(self,
tokenizer,
max_length: int = 512,
max_length_output: int = 34,
drop_overflow_error_text: bool = False,
skip_overflow_error: bool = False,
drop_highlight_error_text: bool = False,
prefix_type: str = None,
padding: bool = True):
""" Wrapper of encode_plus for multiprocessing.
@param tokenizer: transforms.Tokenizer
@param max_length: Max text length of input.
@param max_length_output: Max text length of output.
@param drop_overflow_error_text: If true, return None when the input exceeds the max length.
@param skip_overflow_error: If true, raise an error when the input exceeds the max length.
@param drop_highlight_error_text: If true, raise an error when a highlight span is not found in the paragraph.
@param prefix_type: Either of `qg` or `answer_extraction`, which is to add at the beginning of the text.
@param padding: Pad the sequence to the max length.
"""
self.prefix = TASK_PREFIX[prefix_type] if prefix_type is not None else None
self.tokenizer = tokenizer
self.max_length = max_length
self.max_length_output = max_length_output
# NOTE: for model training, we should drop the exceeded input but not for the evaluator
self.drop_overflow_error_text = drop_overflow_error_text
self.skip_overflow_error = skip_overflow_error
self.drop_highlight_error_text = drop_highlight_error_text
# truncation should be true for the batch process, but not necessary to process single input
self.param_in = {'truncation': True, 'max_length': self.max_length}
self.param_out = {'truncation': True, 'max_length': self.max_length_output}
if padding:
self.param_in['padding'] = 'max_length'
self.param_out['padding'] = 'max_length'
def __call__(self, inputs):
return self.encode_plus(*inputs)
def encode_plus(self, input_sequence: str, output_sequence: str = None, input_highlight: str = None):
""" encode_plus
@param input_sequence: Input sequence.
@param output_sequence: Output sequence.
@param input_highlight: Sub-sequence of `input_sequence` to be surrounded by <hl>.
@return: The output of `encode_plus`.
"""
# add highlight to the input
if input_highlight is not None:
position = input_sequence.find(input_highlight)
if position == -1:
if self.drop_highlight_error_text:
return None
raise HighlightNotFoundError(input_highlight, input_sequence)
input_sequence = '{0}{1} {2} {1}{3}'.format(
input_sequence[:position], ADDITIONAL_SP_TOKENS['hl'], input_highlight,
input_sequence[position+len(input_highlight):])
if self.prefix is not None:
input_sequence = f'{self.prefix}: {input_sequence}'
# handling overflow text
# drop_overflow_error_text ==> remove the overflow sentence from input
# skip_overflow_error ==> keep the overflow sentence
# none of them ==> raise error
if self.drop_overflow_error_text or not self.skip_overflow_error:
if len(self.tokenizer.encode(input_sequence)) > self.max_length:
if not self.drop_overflow_error_text: # raise error for overflow text
raise ExceedMaxLengthError(self.max_length)
return None # remove overflow text
if output_sequence is not None:
if len(self.tokenizer.encode(output_sequence)) > self.max_length_output:
if not self.drop_overflow_error_text: # raise error for overflow text
raise ExceedMaxLengthError(self.max_length)
return None # remove overflow text
if type(self.tokenizer) is transformers.models.mbart.tokenization_mbart_fast.MBartTokenizerFast:
encode = self.tokenizer(input_sequence, **self.param_in)
else:
encode = self.tokenizer(text_target=input_sequence, **self.param_in)
if output_sequence is not None:
encode['labels'] = self.tokenizer.encode(output_sequence, **self.param_out)
return encode
class TransformersQG:
""" Transformers Language Model for Question Generation. """
def __init__(self,
model: str = None,
max_length: int = 512,
max_length_output: int = 256,
model_ae: str = None,
max_length_ae: int = 512,
max_length_output_ae: int = 64,
cache_dir: str = None,
add_prefix: bool = None,
language: str = 'vi',
label_smoothing: float = None,
skip_overflow_error: bool = False,
drop_overflow_error_text: bool = False,
drop_highlight_error_text: bool = False,
drop_answer_error_text: bool = False,
use_auth_token: bool = False,
torch_dtype=None,
device_map: str = None,
low_cpu_mem_usage: bool = False,
is_qg: bool = None,
is_qag: bool = None,
is_qa: bool = None,
is_ae: bool = None):
""" Transformers Language Model for Question Generation.
@param model: Model alias or path to local model file.
@param max_length: Max text length of input.
@param max_length_output: Max text length of output.
@param cache_dir: Directory to cache transformers model files.
@param add_prefix: Whether model uses task-specific prefix (eg. True for T5 but False for BART models).
@param language: Language alias for SpaCy language-specific pipelines (sentencizer/keyword extraction).
@param label_smoothing: [Fine-tuning parameter] Label smoothing.
@param drop_overflow_error_text: If true, return None when the input exceeds the max length.
@param skip_overflow_error: If true, raise an error when the input exceeds the max length.
@param drop_highlight_error_text: If true, raise an error when a highlight span is not found in the paragraph.
@param use_auth_token: [optional] Huggingface transformers argument of `use_auth_token`
"""
# take default model given the language
if model is None:
assert language in DEFAULT_MODELS.keys(),\
f"Model with language '{language}' is not available. Please choose language from " \
f"'{DEFAULT_MODELS.keys()}' or specify 'model'."
model = DEFAULT_MODELS[language]
# classify model type
self.is_qg = 'qg' in model.split('-') if is_qg is None else is_qg
self.is_ae = 'ae' in model.split('-') if is_ae is None else is_ae
self.is_qa = 'qa' in model.split('-') if is_qa is None else is_qa
self.is_qag = 'qag' in model.split('-') if is_qag is None else is_qag
# configs
self.model_name = model
self.max_length = max_length
self.max_length_output = max_length_output
self.label_smoothing = label_smoothing
self.drop_overflow_error_text = drop_overflow_error_text
self.skip_overflow_error = skip_overflow_error
self.drop_highlight_error_text = drop_highlight_error_text
self.drop_answer_error_text = drop_answer_error_text
self.model_name_ae = model_ae
self.max_length_ae = max_length_ae
self.max_length_output_ae = max_length_output_ae
# load model
self.tokenizer, self.model, config = load_language_model(
self.model_name, cache_dir=cache_dir, use_auth_token=use_auth_token, device_map=device_map,
torch_dtype=torch_dtype, low_cpu_mem_usage=low_cpu_mem_usage)
if 'add_prefix' not in config.to_dict().keys():
# this means the model is not fine-tuned
# assert add_prefix, '`add_prefix` is required for non-fine-tuned models'
self.add_prefix = add_prefix
else:
self.add_prefix = config.add_prefix
# set default behaviour for answer extraction
if self.model_name_ae is None:
self.model_name_ae = self.model_name if self.is_ae else "positionrank"
# load answer extraction model
self.answer_model_type = None
if self.model_name_ae in VALID_METHODS:
logging.info(f'use spaCy answer extraction model: {self.model_name_ae}')
self.tokenizer_ae = self.model_ae = self.add_prefix_ae = None
self.spacy_module = SpacyPipeline(language, self.model_name_ae)
self.answer_model_type = 'spacy'
else:
logging.info(f'use LMQG fine-tuned answer extraction model: {self.model_name_ae}')
if self.model_name == self.model_name_ae:
logging.info("the same model as QG is used as AE")
assert self.is_ae, f"the model ({self.model_name_ae}) is not fine-tuned for AE"
self.tokenizer_ae = self.model_ae = self.add_prefix_ae = None
self.answer_model_type = 'multitask'
else:
logging.info(f"loading 2nd model for AE: {self.model_name_ae}")
self.tokenizer_ae, self.model_ae, config_ae = load_language_model(model_ae, cache_dir=cache_dir, use_auth_token=use_auth_token)
self.add_prefix_ae = config_ae.add_prefix
self.answer_model_type = 'pipeline'
self.spacy_module = SpacyPipeline(language)
# GPU setup
self.device = 'cuda' if torch.cuda.device_count() > 0 else 'cpu'
self.parallel = False
if torch.cuda.device_count() > 1:
self.parallel = True
self.model = torch.nn.DataParallel(self.model)
if self.model_ae is not None:
self.model_ae = torch.nn.DataParallel(self.model_ae)
self.model.to(self.device)
if self.model_ae is not None:
self.model_ae.to(self.device)
logging.info(f'Model `{self.model_name}`')
logging.info(f'\t * Num of GPU in use: {torch.cuda.device_count()}')
logging.info(f'\t * Prefix: {self.add_prefix}')
logging.info(f'\t * Language: {language} (ignore at the training phase)')
def generate_qa_end2end(self,
list_context: str or List,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
splitting_symbol: str = ' [SEP] ',
question_prefix: str = "question: ",
answer_prefix: str = ", answer: "):
""" Generate question from paragraph and answer. Note that `list_answer` is needed unless they are already
highlighted in the `list_context`. eg) "I live in <hl> Tokyo <hl>."
@param list_context: List of input texts.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@return: List of generated sentences.
"""
logging.info(f'running model for `question_answer_pair_generation`')
assert self.is_qag, "`generate_qa_end2end` is available for end2end_qag_model"
prefix_type = 'qag' if self.add_prefix else None
single_input = type(list_context) is str
list_context = [list_context] if single_input else list_context
output = self.generate_prediction(
list_context, prefix_type=prefix_type, cache_path=cache_path, num_beams=num_beams, batch_size=batch_size
)
def format_qa(list_raw_string):
tmp = []
for raw_string in list_raw_string:
if len(raw_string.split(answer_prefix)) != 2 or question_prefix not in raw_string:
logging.info(f"invalid prediction: {raw_string}")
else:
q, a = raw_string.split(answer_prefix)
a = re.sub(r'\A\s+', '', a)
a = re.sub(r'\s+\Z', '', a)
q = q.replace(question_prefix, "")
q = re.sub(r'\A\s+', '', q)
q = re.sub(r'\s+\Z', '', q)
tmp.append((q, a))
return tmp
output = [format_qa(o.split(splitting_symbol)) for o in output]
return output[0] if single_input else output
def generate_qa(self,
list_context: str or List,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
num_questions: int = None,
sentence_level: bool = False):
""" Generate question given context.
@param list_context: Input text.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param num_questions: Max number of questions.
@param sentence_level: Run prediction on each sentence of the context independently to reduce complexity.
@return: List of generated sentences.
"""
if self.is_qag:
return self.generate_qa_end2end(list_context, batch_size, num_beams, cache_path)
single_input = type(list_context) is str
list_context = [list_context] if single_input else list_context
original_input_length = len(list_context)
logging.info('running model for `ae`')
list_answer = self.generate_a(
list_context,
batch_size=batch_size,
num_beams=num_beams,
cache_path=cache_path,
sentence_level=sentence_level,
num_questions=num_questions
)
valid_context_id = [n for n, a in enumerate(list_answer) if a is not None]
list_context = [list_context[n] for n in valid_context_id]
list_answer = [list_answer[n] for n in valid_context_id]
qg_input, qg_hl, list_length = [], [], [0]
for c, a in zip(list_context, list_answer):
qg_hl += a
qg_input += [c] * len(a)
list_length.append(list_length[-1] + len(a))
logging.info('running model for `qg`')
list_question = self.generate_q(
qg_input,
list_answer=qg_hl,
batch_size=batch_size,
cache_path=cache_path,
num_beams=num_beams,
sentence_level=sentence_level
)
assert len(qg_hl) == len(list_question), f"{len(qg_input)} != {len(list_question)}"
# return to nested list
list_question = [list_question[list_length[n - 1]:list_length[n]] for n in range(1, len(list_length))]
list_answer = [qg_hl[list_length[n - 1]:list_length[n]] for n in range(1, len(list_length))]
output_list = [None] * original_input_length
for n, _id in enumerate(valid_context_id):
output_list[_id] = [(q, a) for q, a in zip(list_question[n], list_answer[n])]
return output_list[0] if single_input else output_list
def generate_a(self,
context: str or List,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
sentence_level: bool = False,
num_questions: int = None):
""" Generate answers from each sentence.
@param context: Input text.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param sentence_level: Run prediction on each sentence of the context independently to reduce complexity.
@param num_questions: Max number of questions.
@return: List of generated answers.
"""
logging.info(f'running model for `answer_extraction`')
if self.answer_model_type == 'spacy':
num_questions = 10 if num_questions is None else num_questions
if type(context) is str:
return self.spacy_module.keyword(context, num_questions)
else:
return [self.spacy_module.keyword(c, num_questions) for c in context]
single_input = type(context) is str
context = [context] if single_input else context
list_sentences = [self.spacy_module.sentence(c) for c in context] # split into sentence
list_inputs = [[c] * len(s) for c, s in zip(context, list_sentences)]
list_length = [0] + np.cumsum([len(s) for s in list_sentences]).tolist()
if sentence_level:
list_inputs = list_sentences
# flatten inputs
flat_sentences = list(chain(*list_sentences))
flat_inputs = list(chain(*list_inputs))
if self.answer_model_type == 'multitask':
answer = self.generate_prediction(
flat_inputs, # list_input,
highlights=flat_sentences, # highlights=list_sentence,
prefix_type='ae' if self.add_prefix else None,
cache_path=cache_path,
num_beams=num_beams,
batch_size=batch_size
)
elif self.answer_model_type == 'pipeline':
answer = self.generate_prediction(
flat_inputs, # list_input,
highlights=flat_sentences, # highlights=list_sentence,
prefix_type='ae' if self.add_prefix_ae else None,
cache_path=cache_path,
num_beams=num_beams,
batch_size=batch_size,
switch_to_model_ae=True
)
else:
raise ValueError(f"unknown answer model type: {self.answer_model_type}")
# return to nested list
answer = [clean(a) for a in answer]
list_answer = [answer[list_length[n - 1]:list_length[n]] for n in range(1, len(list_length))]
list_answer = [[a for a, c in zip(a_sent, c_sent) if a is not None and a in c]
for a_sent, c_sent in zip(list_answer, list_inputs)]
list_answer = [None if len(a) == 0 else a for a in list_answer]
if not self.drop_answer_error_text:
if any(a is None for a in list_answer):
raise AnswerNotFoundError([context[n] for n, a in enumerate(list_answer) if a is None][0])
return list_answer[0] if single_input else list_answer
def generate_q(self,
list_context: str or List,
list_answer: List = None,
batch_size: int = None,
num_beams: int = 4,
cache_path: str = None,
sentence_level: bool = False):
""" Generate question from paragraph and answer. Note that `list_answer` is needed unless they are already
highlighted in the `list_context`. eg) "I live in <hl> Tokyo <hl>."
@param list_context: List of input texts.
@param list_answer: List of answers in the `list_context` that are highlighted by <hl>.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param sentence_level: Run prediction on each sentence of the context independently to reduce complexity.
@return: List of generated sentences.
"""
assert self.is_qg, "model is not fine-tuned for QG"
if list_answer is not None:
assert type(list_context) is type(list_answer), f"{type(list_context)} != {type(list_answer)}"
single_input = False
if type(list_context) is str:
list_context = [list_context]
list_answer = [list_answer] if list_answer is not None else None
single_input = True
output = self.generate_prediction(
list_context,
highlights=list_answer,
prefix_type='qg' if self.add_prefix else None,
cache_path=cache_path,
num_beams=num_beams,
batch_size=batch_size,
sentence_level=sentence_level
)
if single_input:
return output[0]
return output
def generate_prediction(self,
inputs: List,
highlights: List or None = None,
prefix_type: str = None,
num_beams: int = 4,
batch_size: int = None,
cache_path: str = None,
sentence_level: bool = False,
switch_to_model_ae: bool = False):
""" General method to generate model prediction
@param inputs: List of input sequences.
@param highlights: List of sub-sequences from list_context to be highlighted by <hl>.
@param batch_size: Batch size.
@param num_beams: Number of beam for model generation.
@param cache_path: Path to pre-compute features.
@param prefix_type: Either of `qg` or `answer_extraction`, which is to add at the beginning of the text.
@return: List of generated sequences.
"""
self.eval()
if switch_to_model_ae:
assert self.model_ae is not None and self.tokenizer_ae is not None
model = self.model_ae
tokenizer = self.tokenizer_ae
max_length_output = self.max_length_output_ae
else:
model = self.model
tokenizer = self.tokenizer
max_length_output = self.max_length_output
if sentence_level:
assert highlights is not None, '`sentence_level` needs `highlights`.'
assert len(highlights) == len(inputs), str([len(highlights), len(inputs)])
list_sentence = []
for context, answer in zip(inputs, highlights):
s = [sentence for sentence in self.spacy_module.sentence(context) if answer in sentence]
list_sentence.append(s[0] if len(s) != 0 else context)
inputs = list_sentence
assert type(inputs) is list, inputs
encode_list = self.text_to_encode(
inputs,
highlights=highlights,
prefix_type=prefix_type,
cache_path=cache_path,
switch_to_model_ae=switch_to_model_ae
)
loader = self.get_data_loader(encode_list, batch_size=batch_size)
outputs = []
for encode in loader:
with torch.no_grad():
if 'labels' in encode:
encode.pop('labels')
encode = {k: v.to(self.device) for k, v in encode.items()}
encode['max_length'] = max_length_output
encode['num_beams'] = num_beams
tensor = model.module.generate(**encode) if self.parallel else model.generate(**encode)
outputs += tokenizer.batch_decode(tensor, skip_special_tokens=True)
return outputs