File size: 10,057 Bytes
6c6b947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
var log = console.log;
var ctx = null;
var canvas = null;
var RNN_SIZE = 400;
var VOCAB_SIZE = 165;
var NUM_ATT_HEADS=10;
var NUM_GMM_HEADS=20;
var cur_run = 0;
var scale_factor = 1.;

var randn = function() {
    // Standard Normal random variable using Box-Muller transform.
    var u = Math.random() * 0.999 + 1e-5;
    var v = Math.random() * 0.999 + 1e-5;
    return Math.sqrt(-2.0 * Math.log(u)) * Math.cos(2.0 * Math.PI * v);
}

var rand_truncated_normal = function(low, high) {
    while (true) {
        r = randn();
        if (r >= low && r <= high)
            break;
        // rejection sampling.
    }
    return r;
}



var char2idx = {'\x00': 0, ' ': 1, '!': 2, '"': 3, '#': 4, '%': 5, '&': 6, "'": 7, '(': 8, ')': 9, '*': 10, ',': 11, '-': 12, '.': 13, '/': 14, '0': 15, '1': 16, '2': 17, '3': 18, '4': 19, '5': 20, '6': 21, '7': 22, '8': 23, '9': 24, ':': 25, ';': 26, '?': 27, 'A': 28, 'B': 29, 'C': 30, 'D': 31, 'E': 32, 'F': 33, 'G': 34, 'H': 35, 'I': 36, 'J': 37, 'K': 38, 'L': 39, 'M': 40, 'N': 41, 'O': 42, 'P': 43, 'Q': 44, 'R': 45, 'S': 46, 'T': 47, 'U': 48, 'V': 49, 'W': 50, 'X': 51, 'Y': 52, 'a': 53, 'b': 54, 'c': 55, 'd': 56, 'e': 57, 'f': 58, 'g': 59, 'h': 60, 'i': 61, 'j': 62, 'k': 63, 'l': 64, 'm': 65, 'n': 66, 'o': 67, 'p': 68, 'q': 69, 'r': 70, 's': 71, 't': 72, 'u': 73, 'v': 74, 'w': 75, 'x': 76, 'y': 77, 'z': 78, 'À': 79, 'Á': 80, 'Â': 81, 'Ô': 82, 'Ú': 83, 'Ý': 84, 'à': 85, 'á': 86, 'â': 87, 'ã': 88, 'è': 89, 'é': 90, 'ê': 91, 'ì': 92, 'í': 93, 'ò': 94, 'ó': 95, 'ô': 96, 'õ': 97, 'ù': 98, 'ú': 99, 'ý': 100, 'Ă': 101, 'ă': 102, 'Đ': 103, 'đ': 104, 'ĩ': 105, 'ũ': 106, 'Ơ': 107, 'ơ': 108, 'Ư': 109, 'ư': 110, 'ạ': 111, 'Ả': 112, 'ả': 113, 'Ấ': 114, 'ấ': 115, 'Ầ': 116, 'ầ': 117, 'ẩ': 118, 'ẫ': 119, 'ậ': 120, 'ắ': 121, 'ằ': 122, 'ẳ': 123, 'ẵ': 124, 'ặ': 125, 'ẹ': 126, 'ẻ': 127, 'ẽ': 128, 'ế': 129, 'Ề': 130, 'ề': 131, 'Ể': 132, 'ể': 133, 'ễ': 134, 'Ệ': 135, 'ệ': 136, 'ỉ': 137, 'ị': 138, 'ọ': 139, 'ỏ': 140, 'Ố': 141, 'ố': 142, 'Ồ': 143, 'ồ': 144, 'ổ': 145, 'ỗ': 146, 'ộ': 147, 'ớ': 148, 'ờ': 149, 'Ở': 150, 'ở': 151, 'ỡ': 152, 'ợ': 153, 'ụ': 154, 'Ủ': 155, 'ủ': 156, 'ứ': 157, 'ừ': 158, 'ử': 159, 'ữ': 160, 'ự': 161, 'ỳ': 162, 'ỷ': 163, 'ỹ': 164};

var gru_core = function(input, weights, state, hidden_size) {
    var [w_h,w_i,b] = weights;
    var [w_h_z,w_h_a] = tf.split(w_h, [2 * hidden_size, hidden_size], 1);
    var [b_z,b_a] = tf.split(b, [2 * hidden_size, hidden_size], 0);
    gates_x = tf.matMul(input, w_i);
    [zr_x,a_x] = tf.split(gates_x, [2 * hidden_size, hidden_size], 1);
    zr_h = tf.matMul(state, w_h_z);
    zr = tf.add(tf.add(zr_x, zr_h), b_z);
    // fix this
    [z,r] = tf.split(tf.sigmoid(zr), 2, 1);
    a_h = tf.matMul(tf.mul(r, state), w_h_a);
    a = tf.tanh(tf.add(tf.add(a_x, a_h), b_a));
    next_state = tf.add(tf.mul(tf.sub(1., z), state), tf.mul(z, a));
    return [next_state, next_state];
};


var generate = function() {
    cur_run = cur_run + 1;
    setTimeout(function() {   
        var counter = 2000;
        tf.disposeVariables();
        
        tf.engine().startScope();
        ctx.clearRect(0, 0, canvas.width, canvas.height);
        ctx.beginPath();
        dojob(cur_run);
    }, 200);

    return false;
}

var dojob = function(run_id) {
    var text = document.getElementById("user-input").value;
    if (text.length == 0) {
        text = "Tất cả mọi người đều sinh ra có quyền bình đẳng.";
    }


    log(text);
    original_text = text;
    text = '' + text + '            ';

    text = Array.from(text).map(function(e) {
        return char2idx[e]
    })
    var text_embed = WEIGHTS['rnn/~/embed_1__embeddings'];
    indices = tf.tensor1d(text, 'int32');
    text = text_embed.gather(indices);

    var embed = text;

    var writer_embed = WEIGHTS['rnn/~/embed__embeddings'];
    var e = document.getElementById("writers");
    var wid = parseInt(e.value);
    log(wid);

    wid = tf.tensor1d([wid], 'int32');
    wid = writer_embed.gather(wid);
    embed = tf.add(wid, embed);



    filter = WEIGHTS['rnn/~/conv1_d__w'];
    embed = tf.conv1d(embed, filter, 1, 'same');
    bias = tf.expandDims(WEIGHTS['rnn/~/conv1_d__b'], 0);
    embed = tf.add(embed, bias);


    // initial state
    var gru0_hx = tf.zeros([1, RNN_SIZE]);
    var gru1_hx = tf.zeros([1, RNN_SIZE]);
    var gru2_hx = tf.zeros([1, RNN_SIZE]);

    var att_location = tf.zeros([1, NUM_ATT_HEADS]);
    var att_context = tf.zeros([1, VOCAB_SIZE]);

    var input = tf.tensor([[0., 0., 1.]]);

    gru0_w_h = WEIGHTS['rnn/~/attention_core/~/gru__w_h'];
    gru0_w_i = WEIGHTS['rnn/~/attention_core/~/gru__w_i'];
    gru0_bias = WEIGHTS['rnn/~/attention_core/~/gru__b'];

    gru1_w_h = WEIGHTS['rnn/~/attention_core/~/gru_1__w_h'];
    gru1_w_i = WEIGHTS['rnn/~/attention_core/~/gru_1__w_i'];
    gru1_bias = WEIGHTS['rnn/~/attention_core/~/gru_1__b'];

    gru2_w_h = WEIGHTS['rnn/~/attention_core/~/gru_2__w_h'];
    gru2_w_i = WEIGHTS['rnn/~/attention_core/~/gru_2__w_i'];
    gru2_bias = WEIGHTS['rnn/~/attention_core/~/gru_2__b'];

    att_w = WEIGHTS['rnn/~/attention_core/~/linear__w'];
    att_b = WEIGHTS['rnn/~/attention_core/~/linear__b'];
    gmm_w = WEIGHTS['rnn/~/linear__w'];
    gmm_b = WEIGHTS['rnn/~/linear__b'];

    var ruler = tf.tensor([...Array(text.shape[0]).keys()]);
    ruler = tf.expandDims(ruler, 1);
    var bias = parseInt(document.getElementById("bias").value) / 100 * 3;


    var cur_x = 20;
    var cur_y = innerHeight / 2 + 30;
    var path = [];
    var dx = 0.;
    var dy = 0;
    var eos = 1.;
    var counter = 0;


    function loop(my_run_id) {
        if (my_run_id < cur_run) {
            tf.disposeVariables();
            tf.engine().endScope();
            return;
        }

        counter++;
        if (counter < 2000) {
            [att_location,att_context,gru0_hx,gru1_hx, gru2_hx, input] = tf.tidy(function() {
                // Attention
                const inp_0 = tf.concat([att_context, input], 1);
                gru0_hx_ = gru0_hx;
                [out_0,gru0_hx] = gru_core(inp_0, [gru0_w_h, gru0_w_i, gru0_bias], gru0_hx, RNN_SIZE);
                tf.dispose(gru0_hx_);
                const att_inp = tf.concat([att_context, input, out_0], 1);
                const att_params = tf.add(tf.matMul(att_inp, att_w), att_b);
                [alpha,beta,kappa] = tf.split(tf.softplus(att_params), 3, 1);
                att_location_ = att_location;
                att_location = tf.add(att_location, tf.div(kappa, 25.));
                tf.dispose(att_location_)

                var phi = tf.sum(tf.mul(alpha, tf.exp(tf.div(tf.neg(tf.square(tf.sub(att_location, ruler))), beta))), 1);
                phi = tf.expandDims(phi, 0);
                
                att_context_ = att_context;
                att_context = tf.sum(tf.mul(tf.expandDims(phi, 2), tf.expandDims(embed, 0)), 1)
                tf.dispose(att_context_);

                const inp_1 = tf.concat([input, out_0, att_context], 1);
                // tf.dispose(input);
                gru1_hx_ = gru1_hx;
                [out_1,gru1_hx] = gru_core(inp_1, [gru1_w_h, gru1_w_i, gru1_bias], gru1_hx, RNN_SIZE);
                tf.dispose(gru1_hx_);

                const inp_2 = tf.concat([input, out_1, att_context], 1);
                tf.dispose(input);
                gru2_hx_ = gru2_hx;
                [out_2, gru2_hx] = gru_core(inp_2, [gru2_w_h, gru2_w_i, gru2_bias], gru2_hx, RNN_SIZE);
                tf.dispose(gru2_hx_);

                // debugger;

                // GMM
                const gmm_params = tf.add(tf.matMul(out_2, gmm_w), gmm_b);
                [x,y,logstdx,logstdy,angle,log_weight,eos_logit] = tf.split(gmm_params, [NUM_GMM_HEADS, NUM_GMM_HEADS, NUM_GMM_HEADS, NUM_GMM_HEADS, NUM_GMM_HEADS, NUM_GMM_HEADS, 1], 1);
                // log_weight = tf.softmax(log_weight, 1);
                // log_weight = tf.log(log_weight);
                // log_weight = tf.mul(log_weight, 1. + bias);
                const idx = tf.argMax(log_weight, 1).dataSync()[0];
                // const idx = tf.multinomial(log_weight, 1).dataSync()[0];
                x = x.dataSync()[idx];
                y = y.dataSync()[idx];
                const stdx = tf.exp(tf.sub(logstdx, bias)).dataSync()[idx];
                const stdy = tf.exp(tf.sub(logstdy, bias)).dataSync()[idx];
                angle = angle.dataSync()[idx];
                e = tf.sigmoid(tf.mul(eos_logit, (1. + bias/5))).dataSync()[0];
                const rx = rand_truncated_normal(-5, 5) * stdx;
                const ry = rand_truncated_normal(-5, 5) * stdy;
                x = x + Math.cos(-angle) * rx - Math.sin(-angle) * ry;
                y = y + Math.sin(-angle) * rx + Math.cos(-angle) * ry;
                if (Math.random() < e) {
                    e = 1.;
                } else {
                    e = 0.;
                }
                input = tf.tensor([[x, y, e]]);
                return [att_location, att_context, gru0_hx, gru1_hx, gru2_hx, input];
            });

            [dx,dy,eos_] = input.dataSync();
            dy = -dy * 3. * scale_factor;
            dx = dx * 3. * scale_factor;
            if (eos == 0.) {
                ctx.beginPath();
                ctx.moveTo(cur_x, cur_y, 0, 0);
                ctx.lineTo(cur_x + dx, cur_y + dy);
                ctx.stroke();
            }
            eos = eos_;
            cur_x = cur_x + dx;
            cur_y = cur_y + dy;

            if (att_location.dataSync()[0] < original_text.length + 1.5) {
                setTimeout(function() {loop(my_run_id);}, 0);
            }
        }
    }

    loop(run_id);
}


window.onload = function(e) {
    //Setting up canvas
    canvas = document.getElementById("hw-canvas");
    ctx = canvas.getContext("2d");
    scale_factor = window.innerWidth / 1600;
    ctx.canvas.width = window.innerWidth;
    ctx.canvas.height = window.innerHeight;

}