D0k-tor commited on
Commit
7b99df8
·
1 Parent(s): 87e930a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -2
app.py CHANGED
@@ -54,11 +54,15 @@ with gr.Blocks() as demo:
54
  """
55
  <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
56
  <h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
57
- TextDiffuser: Diffusion Models as Text Painters
58
  </h1>
59
  <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 2rem; margin-bottom: 1.5rem">
60
- We propose <b>Image to Text</b>, with ViT model but with LORA fine-tuning.
 
61
  </h2>
 
 
 
62
  </div>
63
  """)
64
  gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)
 
54
  """
55
  <div style="text-align: center; max-width: 1200px; margin: 20px auto;">
56
  <h1 style="font-weight: 900; font-size: 3rem; margin: 0rem">
57
+ ViT Image-to-Text algorithms with LORA
58
  </h1>
59
  <h2 style="text-align: left; font-weight: 450; font-size: 1rem; margin-top: 2rem; margin-bottom: 1.5rem">
60
+ In the field of large language models, the challenge of fine-tuning has long perplexed researchers. Microsoft, however, has unveiled an innovative solution called <b>Low-Rank Adaptation (LoRA)</b>. With the emergence of behemoth models like GPT-3 boasting billions of parameters, the cost of fine-tuning them for specific tasks or domains has become exorbitant.
61
+ LoRA offers a groundbreaking approach by freezing the weights of pre-trained models and introducing trainable layers known as <b>rank-decomposition matrices in each transformer block</b>. This ingenious technique significantly reduces the number of trainable parameters and minimizes GPU memory requirements, as gradients no longer need to be computed for the majority of model weights.
62
  </h2>
63
+ <h3>
64
+ You can find more info here: [Linkedin article] (https://www.linkedin.com/pulse/fine-tuning-image-to-text-algorithms-withlora-daniel-puente-viejo)
65
+ </h3>
66
  </div>
67
  """)
68
  gr.inputs.Image(label="Upload any Image", type = 'pil', optional=True)