Music-Generator / train.py
nullHawk's picture
v0
e8ca4ee verified
raw
history blame
9.04 kB
import os
import sys
import time
import random
import json
import numpy as np
import matplotlib.pyplot as plt
from model import MusicLSTM as MusicRNN
import torch
import torch.nn as nn
import torch.optim as optim
from torch.autograd import Variable
from utils import seq_to_tensor, load_vocab, save_vocab
def logger(active=True):
"""Simple logging utility."""
def log(*args, **kwargs):
if active:
print(*args, **kwargs)
return log
# Configuration
class Config:
SAVE_EVERY = 20
SEQ_SIZE = 25
RANDOM_SEED = 11
VALIDATION_SIZE = 0.15
LR = 1e-3
N_EPOCHS = 100
NUM_LAYERS = 1
HIDDEN_SIZE = 150
DROPOUT_P = 0
MODEL_TYPE = 'lstm'
INPUT_FILE = 'data/music.txt'
RESUME = False
BATCH_SIZE = 1
# Utility functions
def tic():
"""Start timer."""
return time.time()
def toc(start_time, msg=None):
"""Calculate elapsed time."""
s = time.time() - start_time
m = int(s / 60)
if msg:
return f'{m}m {int(s - (m * 60))}s {msg}'
return f'{m}m {int(s - (m * 60))}s'
class DataLoader:
def __init__(self, input_file, config):
self.config = config
self.char_idx, self.char_list = self._load_chars(input_file)
self.data = self._load_data(input_file)
self.train_idxs, self.valid_idxs = self._split_data()
log = logger(True)
log(f"Total songs: {len(self.data)}")
log(f"Training songs: {len(self.train_idxs)}")
log(f"Validation songs: {len(self.valid_idxs)}")
def _load_chars(self, input_file):
"""Load unique characters from the input file."""
with open(input_file, 'r') as f:
char_idx = ''.join(set(f.read()))
return char_idx, list(char_idx)
def _load_data(self, input_file):
"""Load song data from input file."""
with open(input_file, "r") as f:
data, buffer = [], ''
for line in f:
if line == '<start>\n':
buffer += line
elif line == '<end>\n':
buffer += line
data.append(buffer)
buffer = ''
else:
buffer += line
# Filter songs shorter than sequence size
data = [song for song in data if len(song) > self.config.SEQ_SIZE + 10]
return data
def _split_data(self):
"""Split data into training and validation sets."""
num_train = len(self.data)
indices = list(range(num_train))
np.random.seed(self.config.RANDOM_SEED)
np.random.shuffle(indices)
split_idx = int(np.floor(self.config.VALIDATION_SIZE * num_train))
train_idxs = indices[split_idx:]
valid_idxs = indices[:split_idx]
return train_idxs, valid_idxs
def rand_slice(self, data, slice_len=None):
"""Get a random slice of data."""
if slice_len is None:
slice_len = self.config.SEQ_SIZE
d_len = len(data)
s_idx = random.randint(0, d_len - slice_len)
e_idx = s_idx + slice_len + 1
return data[s_idx:e_idx]
def seq_to_tensor(self, seq):
"""Convert sequence to tensor."""
out = torch.zeros(len(seq)).long()
for i, c in enumerate(seq):
out[i] = self.char_idx.index(c)
return out
def song_to_seq_target(self, song):
"""Convert a song to sequence and target."""
try:
a_slice = self.rand_slice(song)
seq = self.seq_to_tensor(a_slice[:-1])
target = self.seq_to_tensor(a_slice[1:])
return seq, target
except Exception as e:
print(f"Error in song_to_seq_target: {e}")
print(f"Song length: {len(song)}")
raise
def train_model(config, data_loader, model, optimizer, loss_function):
"""Training loop for the model."""
log = logger(True)
time_since = tic()
losses, v_losses = [], []
for epoch in range(config.N_EPOCHS):
# Training phase
epoch_loss = 0
model.train()
for i, song_idx in enumerate(data_loader.train_idxs):
try:
seq, target = data_loader.song_to_seq_target(data_loader.data[song_idx])
# Reset hidden state and gradients
model.init_hidden()
optimizer.zero_grad()
# Forward pass
outputs = model(seq)
loss = loss_function(outputs, target)
# Backward pass and optimization
loss.backward()
optimizer.step()
epoch_loss += loss.item()
msg = f'\rTraining Epoch: {epoch}, {(i+1)/len(data_loader.train_idxs)*100:.2f}% iter: {i} Time: {toc(time_since)} Loss: {loss.item():.4f}'
sys.stdout.write(msg)
sys.stdout.flush()
except Exception as e:
log(f"Error processing song {song_idx}: {e}")
continue
print()
losses.append(epoch_loss / len(data_loader.train_idxs))
# Validation phase
model.eval()
val_loss = 0
with torch.no_grad():
for i, song_idx in enumerate(data_loader.valid_idxs):
try:
seq, target = data_loader.song_to_seq_target(data_loader.data[song_idx])
# Reset hidden state
model.init_hidden()
# Forward pass
outputs = model(seq)
loss = loss_function(outputs, target)
val_loss += loss.item()
msg = f'\rValidation Epoch: {epoch}, {(i+1)/len(data_loader.valid_idxs)*100:.2f}% iter: {i} Time: {toc(time_since)} Loss: {loss.item():.4f}'
sys.stdout.write(msg)
sys.stdout.flush()
except Exception as e:
log(f"Error processing validation song {song_idx}: {e}")
continue
print()
v_losses.append(val_loss / len(data_loader.valid_idxs))
# Checkpoint saving
if epoch % config.SAVE_EVERY == 0 or epoch == config.N_EPOCHS - 1:
log('=======> Saving..')
state = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'loss': losses[-1],
'v_loss': v_losses[-1],
'losses': losses,
'v_losses': v_losses,
'epoch': epoch,
}
os.makedirs('checkpoint', exist_ok=True)
torch.save(model, f'checkpoint/ckpt_mdl_{config.MODEL_TYPE}_ep_{config.N_EPOCHS}_hsize_{config.HIDDEN_SIZE}_dout_{config.DROPOUT_P}.t{epoch}')
return losses, v_losses
def plot_losses(losses, v_losses):
"""Plot training and validation losses."""
plt.figure(figsize=(10, 5))
plt.plot(losses, label='Training Loss')
plt.plot(v_losses, label='Validation Loss')
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Loss per Epoch')
plt.legend()
plt.show()
def generate_song(model, data_loader, prime_str='<start>', max_len=1000, temp=0.8):
"""Generate a new song using the trained model."""
model.eval()
model.init_hidden()
creation = prime_str
char_idx, char_list = load_vocab()
# Build up hidden state
prime = seq_to_tensor(creation, char_idx)
with torch.no_grad():
for _ in range(len(prime)-1):
_ = model(prime[_:_+1])
# Generate rest of sequence
for _ in range(max_len):
last_char = prime[-1:]
out = model(last_char).squeeze()
out = torch.exp(out/temp)
dist = out / torch.sum(out)
# Sample from distribution
next_char_idx = torch.multinomial(dist, 1).item()
next_char = char_idx[next_char_idx]
creation += next_char
prime = torch.cat([prime, torch.tensor([next_char_idx])], dim=0)
if creation[-5:] == '<end>':
break
return creation
def main():
"""Main execution function."""
# Set up configuration and data
global model, data_loader
config = Config()
data_loader = DataLoader(config.INPUT_FILE, config)
# Model setup
in_size = out_size = len(data_loader.char_idx)
model = MusicRNN(
in_size,
config.HIDDEN_SIZE,
out_size,
config.MODEL_TYPE,
config.NUM_LAYERS,
config.DROPOUT_P
)
# Optimizer and loss
optimizer = torch.optim.Adam(model.parameters(), lr=config.LR)
loss_function = nn.CrossEntropyLoss()
# Train the model
losses, v_losses = train_model(config, data_loader, model, optimizer, loss_function)
# Plot losses
plot_losses(losses, v_losses)
save_vocab(data_loader)
# Generate a song
generated_song = generate_song(model, data_loader)
print("Generated Song:", generated_song)
if __name__ == "__main__":
main()