nullHawk's picture
added requirments.txt
a6ef0e5 verified
raw
history blame
2.38 kB
import torch
import torch.nn as nn
import torchvision
import torchvision.transforms as transforms
from NeuralNet import NeuralNet
# Device Config
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# hyper parameters
input_size = 784 # 28*28
hidden_size = 100
num_classes = 10
num_epochs = 20
batch_size = 500
learning_rate = 0.001
# MNIST
training_dataset = torchvision.datasets.MNIST(root='./data', train=True,
transform=transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False,
transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=training_dataset, batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=False)
example = iter(train_loader)
samples, labels = next(example)
print(samples.shape, labels.shape)
# for i in range(6):
# plt.subplot(2, 3, i+1)
# plt.imshow(samples[i][0], cmap='gray')
# plt.show()
model = NeuralNet(input_size, hidden_size, num_classes)
#loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
#training loop
n_total_steps = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 100, 1, 28, 28
# n, c, h, w
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
#forward
outputs = model(images)
loss = criterion(outputs, labels)
#backward
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i+1) % 100 == 0:
print(f'epoch {epoch+1}/{num_epochs}, step {i+1}/{n_total_steps}, loss = {loss.item():.4f}')
# test
with torch.no_grad():
n_correct = 0
n_samples = 0
for images , labels in test_loader:
images = images.reshape(-1, 28*28).to(device)
labels = labels.to(device)
outputs = model(images)
# value, index
_, predictions = torch.max(outputs, 1)
n_samples += labels.shape[0]
n_correct += (predictions == labels).sum().item()
acc = 100.0 * n_correct / n_samples
print(f'accuracy = {acc}')
torch.save(model.state_dict(), 'model/model.pt')