Spaces:
Sleeping
Sleeping
File size: 6,102 Bytes
33206e3 7eccd3a 33206e3 7eccd3a 33206e3 7eccd3a 33206e3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import pandas as pd
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
import matplotlib.pyplot as plt
import seaborn as sns
class LoanPredictionDeepANN(nn.Module):
"""
Deeper version for maximum performance
Architecture:
- Input: 9 features
- Hidden Layer 1: 128 neurons (ReLU)
- Hidden Layer 2: 64 neurons (ReLU)
- Hidden Layer 3: 32 neurons (ReLU)
- Hidden Layer 4: 16 neurons (ReLU)
- Output: 1 neuron (Sigmoid)
- Dropout: [0.3, 0.3, 0.2, 0.1]
"""
def __init__(self, input_size=9):
super(LoanPredictionDeepANN, self).__init__()
self.fc1 = nn.Linear(input_size, 128)
self.dropout1 = nn.Dropout(0.3)
self.fc2 = nn.Linear(128, 64)
self.dropout2 = nn.Dropout(0.3)
self.fc3 = nn.Linear(64, 32)
self.dropout3 = nn.Dropout(0.2)
self.fc4 = nn.Linear(32, 16)
self.dropout4 = nn.Dropout(0.1)
self.fc5 = nn.Linear(16, 1)
self._initialize_weights()
def _initialize_weights(self):
for module in self.modules():
if isinstance(module, nn.Linear):
nn.init.xavier_uniform_(module.weight)
nn.init.zeros_(module.bias)
def forward(self, x):
x = F.relu(self.fc1(x))
x = self.dropout1(x)
x = F.relu(self.fc2(x))
x = self.dropout2(x)
x = F.relu(self.fc3(x))
x = self.dropout3(x)
x = F.relu(self.fc4(x))
x = self.dropout4(x)
x = torch.sigmoid(self.fc5(x))
return x
def load_processed_data(data_path='data/processed'):
"""Load the processed training and test data"""
train_data = pd.read_csv(f'{data_path}/train_data_scaled.csv')
test_data = pd.read_csv(f'{data_path}/test_data_scaled.csv')
# Separate features and target
feature_columns = [col for col in train_data.columns if col != 'loan_repaid']
X_train = train_data[feature_columns].values
y_train = train_data['loan_repaid'].values
X_test = test_data[feature_columns].values
y_test = test_data['loan_repaid'].values
return X_train, y_train, X_test, y_test, feature_columns
def calculate_class_weights(y):
"""Calculate class weights for handling imbalanced data"""
from sklearn.utils.class_weight import compute_class_weight
classes = np.unique(y)
weights = compute_class_weight('balanced', classes=classes, y=y)
return torch.FloatTensor(weights)
def evaluate_model(model, X_test, y_test, threshold=0.5):
"""Comprehensive model evaluation - updated for logits output"""
model.eval()
# Get predictions
with torch.no_grad():
X_test_tensor = torch.FloatTensor(X_test)
y_logits = model(X_test_tensor)
y_pred_proba = torch.sigmoid(y_logits).numpy().flatten()
y_pred = (y_pred_proba >= threshold).astype(int)
# Calculate metrics
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
auc_roc = roc_auc_score(y_test, y_pred_proba)
metrics = {
'accuracy': accuracy,
'precision': precision,
'recall': recall,
'f1_score': f1,
'auc_roc': auc_roc
}
return metrics, y_pred, y_pred_proba
def plot_training_history(train_losses, val_losses, train_accuracies, val_accuracies):
"""Plot training history"""
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 5))
# Loss plot
ax1.plot(train_losses, label='Training Loss', color='blue')
ax1.plot(val_losses, label='Validation Loss', color='red')
ax1.set_title('Model Loss')
ax1.set_xlabel('Epoch')
ax1.set_ylabel('Loss')
ax1.legend()
ax1.grid(True)
# Accuracy plot
ax2.plot(train_accuracies, label='Training Accuracy', color='blue')
ax2.plot(val_accuracies, label='Validation Accuracy', color='red')
ax2.set_title('Model Accuracy')
ax2.set_xlabel('Epoch')
ax2.set_ylabel('Accuracy')
ax2.legend()
ax2.grid(True)
plt.tight_layout()
plt.show()
def plot_confusion_matrix(y_true, y_pred, class_names=['Charged Off', 'Fully Paid']):
"""Plot confusion matrix"""
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_true, y_pred)
plt.figure(figsize=(8, 6))
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
xticklabels=class_names, yticklabels=class_names)
plt.title('Confusion Matrix')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.show()
return cm
def model_summary(model):
"""Print model architecture summary"""
print("=" * 60)
print("MODEL ARCHITECTURE SUMMARY")
print("=" * 60)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Model: {model.__class__.__name__}")
print(f"Total parameters: {total_params:,}")
print(f"Trainable parameters: {trainable_params:,}")
print("\nLayer Details:")
print("-" * 40)
for name, module in model.named_modules():
if isinstance(module, nn.Linear):
print(f"{name}: {module}")
elif isinstance(module, nn.Dropout):
print(f"{name}: {module}")
print("=" * 60)
if __name__ == "__main__":
# Example usage
print("Loading processed data...")
X_train, y_train, X_test, y_test, feature_names = load_processed_data()
print(f"Training data shape: {X_train.shape}")
print(f"Test data shape: {X_test.shape}")
print(f"Feature names: {feature_names}")
# Create model
model = LoanPredictionDeepANN()
model_summary(model)
print("\nModel created successfully!")
print("Use train.py to train the model.") |