Spaces:
Sleeping
Sleeping
File size: 16,774 Bytes
7eccd3a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
#!/usr/bin/env python3
"""
Training script for Deep Loan Prediction Neural Network
Optimized for the best performing deep model architecture
"""
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset, WeightedRandomSampler
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import json
import os
import warnings
warnings.filterwarnings('ignore')
from model import (
LoanPredictionDeepANN,
load_processed_data,
calculate_class_weights,
evaluate_model,
plot_training_history,
plot_confusion_matrix,
model_summary
)
class FocalLoss(nn.Module):
"""Focal Loss for handling class imbalance"""
def __init__(self, alpha=2, gamma=2, logits=True):
super(FocalLoss, self).__init__()
self.alpha = alpha
self.gamma = gamma
self.logits = logits
def forward(self, inputs, targets):
if self.logits:
BCE_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduce=False)
else:
BCE_loss = nn.functional.binary_cross_entropy(inputs, targets, reduce=False)
pt = torch.exp(-BCE_loss)
F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss
return torch.mean(F_loss)
class DeepLoanTrainer:
"""Training pipeline for Deep Neural Network"""
def __init__(self, learning_rate=0.012, batch_size=1536, device=None):
self.learning_rate = learning_rate
self.batch_size = batch_size
# Set device
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
print(f"π Using device: {self.device}")
# Initialize model
self.model = LoanPredictionDeepANN().to(self.device)
# Training history
self.train_losses = []
self.val_losses = []
self.train_accuracies = []
self.val_accuracies = []
def prepare_data(self, data_path='data/processed', validation_split=0.2):
"""Load and prepare data for training"""
print("π Loading processed data...")
X_train, y_train, X_test, y_test, feature_names = load_processed_data(data_path)
# Split training data into train/validation
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=validation_split,
random_state=42, stratify=y_train
)
# Convert to PyTorch tensors
self.X_train = torch.FloatTensor(X_train).to(self.device)
self.y_train = torch.FloatTensor(y_train).unsqueeze(1).to(self.device)
self.X_val = torch.FloatTensor(X_val).to(self.device)
self.y_val = torch.FloatTensor(y_val).unsqueeze(1).to(self.device)
self.X_test = torch.FloatTensor(X_test).to(self.device)
self.y_test = torch.FloatTensor(y_test).unsqueeze(1).to(self.device)
# Store original numpy arrays for evaluation
self.X_test_np = X_test
self.y_test_np = y_test
self.feature_names = feature_names
# Create weighted sampler for imbalanced data
class_counts = np.bincount(y_train.astype(int))
class_weights = 1.0 / class_counts
sample_weights = class_weights[y_train.astype(int)]
sampler = WeightedRandomSampler(sample_weights, len(sample_weights))
# Create data loaders
train_dataset = TensorDataset(self.X_train, self.y_train)
val_dataset = TensorDataset(self.X_val, self.y_val)
self.train_loader = DataLoader(train_dataset, batch_size=self.batch_size, sampler=sampler)
self.val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
# Calculate class weights
self.class_weights = calculate_class_weights(y_train)
print(f"β
Data preparation complete:")
print(f" Training samples: {len(X_train):,}")
print(f" Validation samples: {len(X_val):,}")
print(f" Test samples: {len(X_test):,}")
print(f" Features: {len(feature_names)}")
print(f" Class weights: {self.class_weights}")
return self
def setup_training(self, weight_decay=1e-4):
"""Setup training configuration"""
# Optimizer
self.optimizer = optim.AdamW(
self.model.parameters(),
lr=self.learning_rate,
weight_decay=weight_decay,
betas=(0.9, 0.999)
)
# Learning rate scheduler
self.scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
self.optimizer, T_0=20, T_mult=2, eta_min=1e-6
)
# Loss function - Focal Loss for imbalanced data
self.criterion = FocalLoss(alpha=2, gamma=2, logits=True)
print("βοΈ Training setup complete:")
print(f" Optimizer: AdamW (lr={self.learning_rate}, weight_decay={weight_decay})")
print(f" Scheduler: CosineAnnealingWarmRestarts")
print(f" Loss: Focal Loss (alpha=2, gamma=2)")
return self
def train_epoch(self):
"""Train for one epoch"""
self.model.train()
total_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(self.train_loader):
self.optimizer.zero_grad()
# Forward pass - model returns logits for deep ANN
output = self.model(data)
# Convert sigmoid output to logits for FocalLoss
# Since DeepANN returns sigmoid output, convert to logits
eps = 1e-7
output_clamped = torch.clamp(output, eps, 1 - eps)
logits = torch.log(output_clamped / (1 - output_clamped))
loss = self.criterion(logits, target)
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
self.optimizer.step()
self.scheduler.step()
# Predictions
predicted = output > 0.5
total_loss += loss.item()
total += target.size(0)
correct += predicted.eq(target > 0.5).sum().item()
avg_loss = total_loss / len(self.train_loader)
accuracy = 100. * correct / total
return avg_loss, accuracy
def validate_epoch(self):
"""Validate for one epoch"""
self.model.eval()
total_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for data, target in self.val_loader:
# Forward pass
output = self.model(data)
# Convert sigmoid output to logits for FocalLoss
eps = 1e-7
output_clamped = torch.clamp(output, eps, 1 - eps)
logits = torch.log(output_clamped / (1 - output_clamped))
loss = self.criterion(logits, target)
predicted = output > 0.5
total_loss += loss.item()
total += target.size(0)
correct += predicted.eq(target > 0.5).sum().item()
avg_loss = total_loss / len(self.val_loader)
accuracy = 100. * correct / total
return avg_loss, accuracy
def train(self, num_epochs=200, early_stopping_patience=30, save_best=True):
"""Train the model"""
print(f"\nποΈ Starting training for {num_epochs} epochs...")
print("=" * 80)
best_val_loss = float('inf')
patience_counter = 0
best_accuracy = 0.0
for epoch in range(1, num_epochs + 1):
# Train
train_loss, train_acc = self.train_epoch()
# Validate
val_loss, val_acc = self.validate_epoch()
# Store history
self.train_losses.append(train_loss)
self.val_losses.append(val_loss)
self.train_accuracies.append(train_acc)
self.val_accuracies.append(val_acc)
# Print progress
if epoch == 1 or epoch % 10 == 0 or epoch == num_epochs:
lr = self.optimizer.param_groups[0]['lr']
print(f'Epoch {epoch:3d}/{num_epochs}: '
f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.1f}% | '
f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.1f}% | '
f'LR: {lr:.6f}')
# Early stopping based on validation accuracy (for better performance)
if val_acc > best_accuracy:
best_accuracy = val_acc
best_val_loss = val_loss
patience_counter = 0
if save_best:
self.save_model('best_deep_model.pth')
print(f"πΎ New best model saved! Accuracy: {val_acc:.1f}%")
else:
patience_counter += 1
if patience_counter >= early_stopping_patience and epoch > 50:
print(f"βΉοΈ Early stopping triggered after {epoch} epochs")
break
print("=" * 80)
print("β
Training completed!")
# Load best model if saved
if save_best and os.path.exists('best_deep_model.pth'):
self.load_model('best_deep_model.pth')
print("π₯ Loaded best model weights.")
return self
def evaluate(self, threshold=0.5):
"""Evaluate the model on test set"""
print("\nπ Evaluating model on test set...")
# Custom evaluation for DeepANN that returns sigmoid output
self.model.eval()
with torch.no_grad():
X_test_tensor = torch.FloatTensor(self.X_test_np)
y_pred_proba = self.model(X_test_tensor).numpy().flatten()
y_pred = (y_pred_proba >= threshold).astype(int)
# Calculate metrics
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
metrics = {
'accuracy': accuracy_score(self.y_test_np, y_pred),
'precision': precision_score(self.y_test_np, y_pred),
'recall': recall_score(self.y_test_np, y_pred),
'f1_score': f1_score(self.y_test_np, y_pred),
'auc_roc': roc_auc_score(self.y_test_np, y_pred_proba)
}
print("\nπ Test Set Performance:")
print("-" * 30)
for metric, value in metrics.items():
print(f"{metric.capitalize()}: {value:.4f}")
# Plot confusion matrix
cm = plot_confusion_matrix(self.y_test_np, y_pred)
# Plot training history
plot_training_history(
self.train_losses, self.val_losses,
self.train_accuracies, self.val_accuracies
)
return metrics, y_pred, y_pred_proba
def save_model(self, filepath):
"""Save model and training state"""
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'train_losses': self.train_losses,
'val_losses': self.val_losses,
'train_accuracies': self.train_accuracies,
'val_accuracies': self.val_accuracies,
'feature_names': self.feature_names
}, filepath)
def load_model(self, filepath):
"""Load model and training state"""
checkpoint = torch.load(filepath, map_location=self.device, weights_only=False)
self.model.load_state_dict(checkpoint['model_state_dict'])
# Load training history if available
if 'train_losses' in checkpoint:
self.train_losses = checkpoint['train_losses']
self.val_losses = checkpoint['val_losses']
self.train_accuracies = checkpoint['train_accuracies']
self.val_accuracies = checkpoint['val_accuracies']
print(f"β
Model loaded from {filepath}")
def main():
"""Main training function"""
print("π― Deep Loan Prediction Neural Network Training")
print("=" * 60)
# Configuration
config = {
'learning_rate': 0.012, # Optimized learning rate
'batch_size': 1536, # Optimized batch size
'num_epochs': 200, # Sufficient epochs
'early_stopping_patience': 30, # Patience for early stopping
'weight_decay': 1e-4, # Regularization
'validation_split': 0.2 # 20% for validation
}
print("βοΈ Configuration:")
for key, value in config.items():
print(f" {key}: {value}")
# Initialize trainer
trainer = DeepLoanTrainer(
learning_rate=config['learning_rate'],
batch_size=config['batch_size']
)
# Show model architecture
print("\nποΈ Model Architecture:")
model_summary(trainer.model)
# Prepare data and setup training
trainer.prepare_data(validation_split=config['validation_split'])
trainer.setup_training(weight_decay=config['weight_decay'])
# Train the model
trainer.train(
num_epochs=config['num_epochs'],
early_stopping_patience=config['early_stopping_patience']
)
# Evaluate the model
metrics, predictions, probabilities = trainer.evaluate()
# Save final model
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
model_filename = f"loan_prediction_deep_model_{timestamp}.pth"
trainer.save_model(model_filename)
print(f"\nπΎ Final model saved as: {model_filename}")
# Save training results
results = {
'config': config,
'final_metrics': metrics,
'training_history': {
'train_losses': trainer.train_losses,
'val_losses': trainer.val_losses,
'train_accuracies': trainer.train_accuracies,
'val_accuracies': trainer.val_accuracies
}
}
results_filename = f"deep_training_results_{timestamp}.json"
with open(results_filename, 'w') as f:
json.dump(results, f, indent=2)
print(f"π Training results saved as: {results_filename}")
# Performance Analysis
print("\n" + "=" * 60)
print("π― PERFORMANCE ANALYSIS")
print("=" * 60)
final_accuracy = metrics['accuracy']
if final_accuracy > 0.80:
print(f"π EXCELLENT: Accuracy of {final_accuracy:.1%} achieved!")
print(" Outstanding performance for loan prediction!")
elif final_accuracy > 0.70:
print(f"β
VERY GOOD: Accuracy of {final_accuracy:.1%} achieved!")
print(" Great performance for this challenging problem!")
elif final_accuracy > 0.60:
print(f"π GOOD: Accuracy of {final_accuracy:.1%} achieved!")
print(" Solid improvement over baseline!")
else:
print(f"β οΈ NEEDS IMPROVEMENT: Accuracy of {final_accuracy:.1%}")
print(" Consider additional optimization or feature engineering")
print(f"\nπ Key Metrics:")
print(f" β’ Accuracy: {metrics['accuracy']:.1%}")
print(f" β’ Precision: {metrics['precision']:.1%}")
print(f" β’ Recall: {metrics['recall']:.1%}")
print(f" β’ F1-Score: {metrics['f1_score']:.1%}")
print(f" β’ AUC-ROC: {metrics['auc_roc']:.3f}")
# Business insights
print(f"\nπΌ Business Impact:")
precision = metrics['precision']
recall = metrics['recall']
if precision > 0.85:
print(f" β
High Precision ({precision:.1%}): Low false positive rate")
print(f" β Minimizes bad loan approvals")
if recall > 0.70:
print(f" β
Good Recall ({recall:.1%}): Catches most good applications")
print(f" β Maintains business volume")
elif recall < 0.60:
print(f" β οΈ Low Recall ({recall:.1%}): May reject too many good loans")
print(f" β Consider adjusting threshold")
return trainer, metrics
if __name__ == "__main__":
trainer, metrics = main()
print(f"\nπ Training completed! Final accuracy: {metrics['accuracy']:.1%}")
print("π Model is ready for production use!")
|