File size: 16,774 Bytes
7eccd3a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
#!/usr/bin/env python3
"""
Training script for Deep Loan Prediction Neural Network
Optimized for the best performing deep model architecture
"""

import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset, WeightedRandomSampler
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import json
import os
import warnings
warnings.filterwarnings('ignore')

from model import (
    LoanPredictionDeepANN,
    load_processed_data,
    calculate_class_weights,
    evaluate_model,
    plot_training_history,
    plot_confusion_matrix,
    model_summary
)

class FocalLoss(nn.Module):
    """Focal Loss for handling class imbalance"""
    def __init__(self, alpha=2, gamma=2, logits=True):
        super(FocalLoss, self).__init__()
        self.alpha = alpha
        self.gamma = gamma
        self.logits = logits

    def forward(self, inputs, targets):
        if self.logits:
            BCE_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduce=False)
        else:
            BCE_loss = nn.functional.binary_cross_entropy(inputs, targets, reduce=False)
        pt = torch.exp(-BCE_loss)
        F_loss = self.alpha * (1-pt)**self.gamma * BCE_loss
        return torch.mean(F_loss)

class DeepLoanTrainer:
    """Training pipeline for Deep Neural Network"""
    
    def __init__(self, learning_rate=0.012, batch_size=1536, device=None):
        self.learning_rate = learning_rate
        self.batch_size = batch_size
        
        # Set device
        if device is None:
            self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        else:
            self.device = torch.device(device)
        
        print(f"πŸš€ Using device: {self.device}")
        
        # Initialize model
        self.model = LoanPredictionDeepANN().to(self.device)
        
        # Training history
        self.train_losses = []
        self.val_losses = []
        self.train_accuracies = []
        self.val_accuracies = []
        
    def prepare_data(self, data_path='data/processed', validation_split=0.2):
        """Load and prepare data for training"""
        print("πŸ“Š Loading processed data...")
        X_train, y_train, X_test, y_test, feature_names = load_processed_data(data_path)
        
        # Split training data into train/validation
        X_train, X_val, y_train, y_val = train_test_split(
            X_train, y_train, test_size=validation_split, 
            random_state=42, stratify=y_train
        )
        
        # Convert to PyTorch tensors
        self.X_train = torch.FloatTensor(X_train).to(self.device)
        self.y_train = torch.FloatTensor(y_train).unsqueeze(1).to(self.device)
        
        self.X_val = torch.FloatTensor(X_val).to(self.device)
        self.y_val = torch.FloatTensor(y_val).unsqueeze(1).to(self.device)
        
        self.X_test = torch.FloatTensor(X_test).to(self.device)
        self.y_test = torch.FloatTensor(y_test).unsqueeze(1).to(self.device)
        
        # Store original numpy arrays for evaluation
        self.X_test_np = X_test
        self.y_test_np = y_test
        self.feature_names = feature_names
        
        # Create weighted sampler for imbalanced data
        class_counts = np.bincount(y_train.astype(int))
        class_weights = 1.0 / class_counts
        sample_weights = class_weights[y_train.astype(int)]
        sampler = WeightedRandomSampler(sample_weights, len(sample_weights))
        
        # Create data loaders
        train_dataset = TensorDataset(self.X_train, self.y_train)
        val_dataset = TensorDataset(self.X_val, self.y_val)
        
        self.train_loader = DataLoader(train_dataset, batch_size=self.batch_size, sampler=sampler)
        self.val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
        
        # Calculate class weights
        self.class_weights = calculate_class_weights(y_train)
        
        print(f"βœ… Data preparation complete:")
        print(f"   Training samples: {len(X_train):,}")
        print(f"   Validation samples: {len(X_val):,}")
        print(f"   Test samples: {len(X_test):,}")
        print(f"   Features: {len(feature_names)}")
        print(f"   Class weights: {self.class_weights}")
        
        return self
    
    def setup_training(self, weight_decay=1e-4):
        """Setup training configuration"""
        # Optimizer
        self.optimizer = optim.AdamW(
            self.model.parameters(), 
            lr=self.learning_rate, 
            weight_decay=weight_decay,
            betas=(0.9, 0.999)
        )
        
        # Learning rate scheduler
        self.scheduler = optim.lr_scheduler.CosineAnnealingWarmRestarts(
            self.optimizer, T_0=20, T_mult=2, eta_min=1e-6
        )
        
        # Loss function - Focal Loss for imbalanced data
        self.criterion = FocalLoss(alpha=2, gamma=2, logits=True)
        
        print("βš™οΈ  Training setup complete:")
        print(f"   Optimizer: AdamW (lr={self.learning_rate}, weight_decay={weight_decay})")
        print(f"   Scheduler: CosineAnnealingWarmRestarts")
        print(f"   Loss: Focal Loss (alpha=2, gamma=2)")
        
        return self
    
    def train_epoch(self):
        """Train for one epoch"""
        self.model.train()
        total_loss = 0.0
        correct = 0
        total = 0
        
        for batch_idx, (data, target) in enumerate(self.train_loader):
            self.optimizer.zero_grad()
            
            # Forward pass - model returns logits for deep ANN
            output = self.model(data)
            
            # Convert sigmoid output to logits for FocalLoss
            # Since DeepANN returns sigmoid output, convert to logits
            eps = 1e-7
            output_clamped = torch.clamp(output, eps, 1 - eps)
            logits = torch.log(output_clamped / (1 - output_clamped))
            
            loss = self.criterion(logits, target)
            
            loss.backward()
            
            # Gradient clipping
            torch.nn.utils.clip_grad_norm_(self.model.parameters(), max_norm=1.0)
            
            self.optimizer.step()
            self.scheduler.step()
            
            # Predictions
            predicted = output > 0.5
            
            total_loss += loss.item()
            total += target.size(0)
            correct += predicted.eq(target > 0.5).sum().item()
        
        avg_loss = total_loss / len(self.train_loader)
        accuracy = 100. * correct / total
        
        return avg_loss, accuracy
    
    def validate_epoch(self):
        """Validate for one epoch"""
        self.model.eval()
        total_loss = 0.0
        correct = 0
        total = 0
        
        with torch.no_grad():
            for data, target in self.val_loader:
                # Forward pass
                output = self.model(data)
                
                # Convert sigmoid output to logits for FocalLoss
                eps = 1e-7
                output_clamped = torch.clamp(output, eps, 1 - eps)
                logits = torch.log(output_clamped / (1 - output_clamped))
                
                loss = self.criterion(logits, target)
                
                predicted = output > 0.5
                
                total_loss += loss.item()
                total += target.size(0)
                correct += predicted.eq(target > 0.5).sum().item()
        
        avg_loss = total_loss / len(self.val_loader)
        accuracy = 100. * correct / total
        
        return avg_loss, accuracy
    
    def train(self, num_epochs=200, early_stopping_patience=30, save_best=True):
        """Train the model"""
        print(f"\nπŸ‹οΈ  Starting training for {num_epochs} epochs...")
        print("=" * 80)
        
        best_val_loss = float('inf')
        patience_counter = 0
        best_accuracy = 0.0
        
        for epoch in range(1, num_epochs + 1):
            # Train
            train_loss, train_acc = self.train_epoch()
            
            # Validate
            val_loss, val_acc = self.validate_epoch()
            
            # Store history
            self.train_losses.append(train_loss)
            self.val_losses.append(val_loss)
            self.train_accuracies.append(train_acc)
            self.val_accuracies.append(val_acc)
            
            # Print progress
            if epoch == 1 or epoch % 10 == 0 or epoch == num_epochs:
                lr = self.optimizer.param_groups[0]['lr']
                print(f'Epoch {epoch:3d}/{num_epochs}: '
                      f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.1f}% | '
                      f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.1f}% | '
                      f'LR: {lr:.6f}')
            
            # Early stopping based on validation accuracy (for better performance)
            if val_acc > best_accuracy:
                best_accuracy = val_acc
                best_val_loss = val_loss
                patience_counter = 0
                if save_best:
                    self.save_model('best_deep_model.pth')
                    print(f"πŸ’Ύ New best model saved! Accuracy: {val_acc:.1f}%")
            else:
                patience_counter += 1
                
            if patience_counter >= early_stopping_patience and epoch > 50:
                print(f"⏹️  Early stopping triggered after {epoch} epochs")
                break
        
        print("=" * 80)
        print("βœ… Training completed!")
        
        # Load best model if saved
        if save_best and os.path.exists('best_deep_model.pth'):
            self.load_model('best_deep_model.pth')
            print("πŸ“₯ Loaded best model weights.")
        
        return self
    
    def evaluate(self, threshold=0.5):
        """Evaluate the model on test set"""
        print("\nπŸ“ˆ Evaluating model on test set...")
        
        # Custom evaluation for DeepANN that returns sigmoid output
        self.model.eval()
        
        with torch.no_grad():
            X_test_tensor = torch.FloatTensor(self.X_test_np)
            y_pred_proba = self.model(X_test_tensor).numpy().flatten()
            y_pred = (y_pred_proba >= threshold).astype(int)
        
        # Calculate metrics
        from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, roc_auc_score
        
        metrics = {
            'accuracy': accuracy_score(self.y_test_np, y_pred),
            'precision': precision_score(self.y_test_np, y_pred),
            'recall': recall_score(self.y_test_np, y_pred),
            'f1_score': f1_score(self.y_test_np, y_pred),
            'auc_roc': roc_auc_score(self.y_test_np, y_pred_proba)
        }
        
        print("\nπŸ“Š Test Set Performance:")
        print("-" * 30)
        for metric, value in metrics.items():
            print(f"{metric.capitalize()}: {value:.4f}")
        
        # Plot confusion matrix
        cm = plot_confusion_matrix(self.y_test_np, y_pred)
        
        # Plot training history
        plot_training_history(
            self.train_losses, self.val_losses, 
            self.train_accuracies, self.val_accuracies
        )
        
        return metrics, y_pred, y_pred_proba
    
    def save_model(self, filepath):
        """Save model and training state"""
        torch.save({
            'model_state_dict': self.model.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            'train_losses': self.train_losses,
            'val_losses': self.val_losses,
            'train_accuracies': self.train_accuracies,
            'val_accuracies': self.val_accuracies,
            'feature_names': self.feature_names
        }, filepath)
    
    def load_model(self, filepath):
        """Load model and training state"""
        checkpoint = torch.load(filepath, map_location=self.device, weights_only=False)
        self.model.load_state_dict(checkpoint['model_state_dict'])
        
        # Load training history if available
        if 'train_losses' in checkpoint:
            self.train_losses = checkpoint['train_losses']
            self.val_losses = checkpoint['val_losses']
            self.train_accuracies = checkpoint['train_accuracies']
            self.val_accuracies = checkpoint['val_accuracies']
        
        print(f"βœ… Model loaded from {filepath}")


def main():
    """Main training function"""
    print("🎯 Deep Loan Prediction Neural Network Training")
    print("=" * 60)
    
    # Configuration
    config = {
        'learning_rate': 0.012,         # Optimized learning rate
        'batch_size': 1536,             # Optimized batch size
        'num_epochs': 200,              # Sufficient epochs
        'early_stopping_patience': 30,  # Patience for early stopping
        'weight_decay': 1e-4,           # Regularization
        'validation_split': 0.2         # 20% for validation
    }
    
    print("βš™οΈ  Configuration:")
    for key, value in config.items():
        print(f"   {key}: {value}")
    
    # Initialize trainer
    trainer = DeepLoanTrainer(
        learning_rate=config['learning_rate'],
        batch_size=config['batch_size']
    )
    
    # Show model architecture
    print("\nπŸ—οΈ  Model Architecture:")
    model_summary(trainer.model)
    
    # Prepare data and setup training
    trainer.prepare_data(validation_split=config['validation_split'])
    trainer.setup_training(weight_decay=config['weight_decay'])
    
    # Train the model
    trainer.train(
        num_epochs=config['num_epochs'],
        early_stopping_patience=config['early_stopping_patience']
    )
    
    # Evaluate the model
    metrics, predictions, probabilities = trainer.evaluate()
    
    # Save final model
    timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
    model_filename = f"loan_prediction_deep_model_{timestamp}.pth"
    trainer.save_model(model_filename)
    print(f"\nπŸ’Ύ Final model saved as: {model_filename}")
    
    # Save training results
    results = {
        'config': config,
        'final_metrics': metrics,
        'training_history': {
            'train_losses': trainer.train_losses,
            'val_losses': trainer.val_losses,
            'train_accuracies': trainer.train_accuracies,
            'val_accuracies': trainer.val_accuracies
        }
    }
    
    results_filename = f"deep_training_results_{timestamp}.json"
    with open(results_filename, 'w') as f:
        json.dump(results, f, indent=2)
    
    print(f"πŸ“„ Training results saved as: {results_filename}")
    
    # Performance Analysis
    print("\n" + "=" * 60)
    print("🎯 PERFORMANCE ANALYSIS")
    print("=" * 60)
    
    final_accuracy = metrics['accuracy']
    if final_accuracy > 0.80:
        print(f"πŸ† EXCELLENT: Accuracy of {final_accuracy:.1%} achieved!")
        print("    Outstanding performance for loan prediction!")
    elif final_accuracy > 0.70:
        print(f"βœ… VERY GOOD: Accuracy of {final_accuracy:.1%} achieved!")
        print("    Great performance for this challenging problem!")
    elif final_accuracy > 0.60:
        print(f"πŸ‘ GOOD: Accuracy of {final_accuracy:.1%} achieved!")
        print("    Solid improvement over baseline!")
    else:
        print(f"⚠️  NEEDS IMPROVEMENT: Accuracy of {final_accuracy:.1%}")
        print("    Consider additional optimization or feature engineering")
    
    print(f"\nπŸ“Š Key Metrics:")
    print(f"   β€’ Accuracy: {metrics['accuracy']:.1%}")
    print(f"   β€’ Precision: {metrics['precision']:.1%}")
    print(f"   β€’ Recall: {metrics['recall']:.1%}")
    print(f"   β€’ F1-Score: {metrics['f1_score']:.1%}")
    print(f"   β€’ AUC-ROC: {metrics['auc_roc']:.3f}")
    
    # Business insights
    print(f"\nπŸ’Ό Business Impact:")
    precision = metrics['precision']
    recall = metrics['recall']
    
    if precision > 0.85:
        print(f"   βœ… High Precision ({precision:.1%}): Low false positive rate")
        print(f"      β†’ Minimizes bad loan approvals")
    if recall > 0.70:
        print(f"   βœ… Good Recall ({recall:.1%}): Catches most good applications")
        print(f"      β†’ Maintains business volume")
    elif recall < 0.60:
        print(f"   ⚠️  Low Recall ({recall:.1%}): May reject too many good loans")
        print(f"      β†’ Consider adjusting threshold")
    
    return trainer, metrics


if __name__ == "__main__":
    trainer, metrics = main()
    print(f"\nπŸŽ‰ Training completed! Final accuracy: {metrics['accuracy']:.1%}")
    print("πŸš€ Model is ready for production use!")