loan_prediction / src /inference.py
nullHawk's picture
done with v0
7eccd3a
"""
Loan Prediction Inference Script
This script provides inference functionality for the trained loan prediction model.
It can handle both single predictions and batch predictions for loan approval decisions.
Usage:
python inference.py --help # Show help
python inference.py --single # Interactive single prediction
python inference.py --batch input.csv output.csv # Batch prediction
python inference.py --sample # Run with sample data
"""
import torch
import pandas as pd
import numpy as np
import json
import argparse
import sys
import os
from pathlib import Path
from sklearn.preprocessing import StandardScaler
import warnings
warnings.filterwarnings('ignore')
# Import the model
from model import LoanPredictionDeepANN
class LoanPredictor:
"""
Loan Prediction Inference Class
This class handles loading the trained model, preprocessing input data,
and making predictions for loan approval decisions.
"""
def __init__(self, model_path='bin/best_checkpoint.pth',
preprocessing_info_path='data/processed/preprocessing_info.json',
scaler_params_path='data/processed/scaler_params.csv'):
"""
Initialize the LoanPredictor
Args:
model_path (str): Path to the trained model checkpoint
preprocessing_info_path (str): Path to preprocessing configuration
scaler_params_path (str): Path to scaler parameters
"""
self.model_path = model_path
self.preprocessing_info_path = preprocessing_info_path
self.scaler_params_path = scaler_params_path
# Initialize components
self.model = None
self.scaler = None
self.feature_names = None
self.preprocessing_info = None
# Load everything
self._load_preprocessing_info()
self._load_scaler()
self._load_model()
print("βœ… LoanPredictor initialized successfully!")
print(f"πŸ“Š Model expects {len(self.feature_names)} features")
print(f"🎯 Features: {', '.join(self.feature_names)}")
def _load_preprocessing_info(self):
"""Load preprocessing information"""
try:
with open(self.preprocessing_info_path, 'r') as f:
self.preprocessing_info = json.load(f)
# Define feature names based on the model
self.feature_names = [
'dti', 'credit_history_length', 'debt_to_credit_ratio',
'revol_bal', 'installment', 'revol_util',
'int_rate', 'annual_inc', 'total_credit_lines'
]
print(f"βœ… Loaded preprocessing info from {self.preprocessing_info_path}")
except Exception as e:
print(f"❌ Error loading preprocessing info: {str(e)}")
raise
def _load_scaler(self):
"""Load and reconstruct the scaler from saved parameters"""
try:
scaler_params = pd.read_csv(self.scaler_params_path)
# Reconstruct StandardScaler
self.scaler = StandardScaler()
self.scaler.mean_ = scaler_params['mean'].values
self.scaler.scale_ = scaler_params['scale'].values
# Calculate variance from scale (variance = scale^2)
self.scaler.var_ = (scaler_params['scale'].values) ** 2
self.scaler.n_features_in_ = len(scaler_params)
self.scaler.feature_names_in_ = scaler_params['feature'].values
print(f"βœ… Loaded scaler parameters from {self.scaler_params_path}")
except Exception as e:
print(f"❌ Error loading scaler: {str(e)}")
raise
def _load_model(self):
"""Load the trained model"""
try:
# Initialize model architecture
self.model = LoanPredictionDeepANN(input_size=len(self.feature_names))
# Load trained weights
checkpoint = torch.load(self.model_path, map_location='cpu')
self.model.load_state_dict(checkpoint['model_state_dict'])
# Set to evaluation mode
self.model.eval()
print(f"βœ… Loaded model from {self.model_path}")
print(f"πŸ“ˆ Model trained for {checkpoint.get('epoch', 'unknown')} epochs")
except Exception as e:
print(f"❌ Error loading model: {str(e)}")
raise
def preprocess_input(self, data):
"""
Preprocess input data for prediction
Args:
data (dict or pd.DataFrame): Input data
Returns:
np.ndarray: Preprocessed and scaled data
"""
try:
# Convert to DataFrame if dict
if isinstance(data, dict):
df = pd.DataFrame([data])
elif isinstance(data, pd.DataFrame):
df = data.copy()
else:
raise ValueError("Input data must be dict or DataFrame")
# Ensure all required features are present
missing_features = set(self.feature_names) - set(df.columns)
if missing_features:
raise ValueError(f"Missing required features: {missing_features}")
# Select and order features correctly
df = df[self.feature_names]
# Apply scaling
scaled_data = self.scaler.transform(df.values)
return scaled_data
except Exception as e:
print(f"❌ Error preprocessing data: {str(e)}")
raise
def predict_single(self, data, return_proba=True):
"""
Make prediction for a single loan application
Args:
data (dict): Single loan application data
return_proba (bool): Whether to return probability scores
Returns:
dict: Prediction results
"""
try:
# Preprocess
processed_data = self.preprocess_input(data)
# Convert to tensor
input_tensor = torch.FloatTensor(processed_data)
# Make prediction
with torch.no_grad():
output = self.model(input_tensor)
probability = torch.sigmoid(output).item()
prediction = 1 if probability >= 0.5 else 0
# Prepare result
result = {
'prediction': prediction,
'prediction_label': 'Fully Paid' if prediction == 1 else 'Charged Off',
'confidence': max(probability, 1 - probability),
'risk_assessment': self._get_risk_assessment(probability)
}
if return_proba:
result['probability_fully_paid'] = probability
result['probability_charged_off'] = 1 - probability
return result
except Exception as e:
print(f"❌ Error making prediction: {str(e)}")
raise
def predict_batch(self, data):
"""
Make predictions for multiple loan applications
Args:
data (pd.DataFrame): Batch of loan application data
Returns:
pd.DataFrame: Predictions with probabilities
"""
try:
# Preprocess
processed_data = self.preprocess_input(data)
# Convert to tensor
input_tensor = torch.FloatTensor(processed_data)
# Make predictions
with torch.no_grad():
outputs = self.model(input_tensor)
probabilities = torch.sigmoid(outputs).numpy().flatten()
predictions = (probabilities >= 0.5).astype(int)
# Create results DataFrame
results = data.copy()
results['prediction'] = predictions
results['prediction_label'] = ['Fully Paid' if pred == 1 else 'Charged Off'
for pred in predictions]
results['probability_fully_paid'] = probabilities
results['probability_charged_off'] = 1 - probabilities
results['confidence'] = np.maximum(probabilities, 1 - probabilities)
results['risk_assessment'] = [self._get_risk_assessment(prob)
for prob in probabilities]
return results
except Exception as e:
print(f"❌ Error making batch predictions: {str(e)}")
raise
def _get_risk_assessment(self, probability):
"""
Get risk assessment based on probability
Args:
probability (float): Probability of loan being fully paid
Returns:
str: Risk assessment category
"""
if probability >= 0.8:
return "Low Risk"
elif probability >= 0.6:
return "Medium-Low Risk"
elif probability >= 0.4:
return "Medium-High Risk"
else:
return "High Risk"
def get_feature_info(self):
"""Get information about required features"""
feature_descriptions = {
'dti': 'Debt-to-income ratio (%)',
'credit_history_length': 'Credit history length (years)',
'debt_to_credit_ratio': 'Debt to available credit ratio',
'revol_bal': 'Total revolving credit balance ($)',
'installment': 'Monthly loan installment ($)',
'revol_util': 'Revolving credit utilization (%)',
'int_rate': 'Loan interest rate (%)',
'annual_inc': 'Annual income ($)',
'total_credit_lines': 'Total number of credit lines'
}
return feature_descriptions
def interactive_prediction(predictor):
"""Interactive single prediction mode"""
print("\n🎯 Interactive Loan Prediction")
print("=" * 50)
print("Enter the following information for the loan application:")
print()
# Get feature info
feature_info = predictor.get_feature_info()
# Collect input
data = {}
for feature, description in feature_info.items():
while True:
try:
value = float(input(f"{description}: "))
data[feature] = value
break
except ValueError:
print("Please enter a valid number.")
# Make prediction
print("\nπŸ”„ Making prediction...")
result = predictor.predict_single(data)
# Display results
print("\nπŸ“Š Prediction Results")
print("=" * 30)
print(f"🎯 Prediction: {result['prediction_label']}")
print(f"πŸ“ˆ Confidence: {result['confidence']:.2%}")
print(f"⚠️ Risk Assessment: {result['risk_assessment']}")
print(f"βœ… Probability Fully Paid: {result['probability_fully_paid']:.2%}")
print(f"❌ Probability Charged Off: {result['probability_charged_off']:.2%}")
def batch_prediction(predictor, input_file, output_file):
"""Batch prediction mode"""
try:
print(f"πŸ“‚ Loading data from {input_file}...")
data = pd.read_csv(input_file)
print(f"πŸ“Š Processing {len(data)} loan applications...")
results = predictor.predict_batch(data)
print(f"πŸ’Ύ Saving results to {output_file}...")
results.to_csv(output_file, index=False)
# Print summary
print("\nπŸ“ˆ Batch Prediction Summary")
print("=" * 40)
print(f"Total Applications: {len(results)}")
print(f"Predicted Fully Paid: {(results['prediction'] == 1).sum()}")
print(f"Predicted Charged Off: {(results['prediction'] == 0).sum()}")
print(f"Average Confidence: {results['confidence'].mean():.2%}")
# Risk distribution
risk_dist = results['risk_assessment'].value_counts()
print("\n🎯 Risk Distribution:")
for risk, count in risk_dist.items():
print(f" {risk}: {count} ({count/len(results):.1%})")
print(f"\nβœ… Results saved to {output_file}")
except Exception as e:
print(f"❌ Error in batch prediction: {str(e)}")
raise
def sample_prediction(predictor):
"""Run prediction with sample data"""
print("\nπŸ§ͺ Sample Prediction")
print("=" * 30)
# Sample data - representing a typical loan application
sample_data = {
'dti': 15.5, # Debt-to-income ratio
'credit_history_length': 8.2, # Credit history in years
'debt_to_credit_ratio': 0.35, # Debt to credit ratio
'revol_bal': 8500.0, # Revolving balance
'installment': 450.0, # Monthly installment
'revol_util': 42.5, # Credit utilization
'int_rate': 12.8, # Interest rate
'annual_inc': 65000.0, # Annual income
'total_credit_lines': 12 # Total credit lines
}
print("πŸ“‹ Sample loan application data:")
for feature, value in sample_data.items():
description = predictor.get_feature_info()[feature]
print(f" {description}: {value}")
# Make prediction
result = predictor.predict_single(sample_data)
# Display results
print("\nπŸ“Š Prediction Results")
print("=" * 30)
print(f"🎯 Prediction: {result['prediction_label']}")
print(f"πŸ“ˆ Confidence: {result['confidence']:.2%}")
print(f"⚠️ Risk Assessment: {result['risk_assessment']}")
print(f"βœ… Probability Fully Paid: {result['probability_fully_paid']:.2%}")
print(f"❌ Probability Charged Off: {result['probability_charged_off']:.2%}")
def main():
"""Main function"""
parser = argparse.ArgumentParser(
description="Loan Prediction Inference Script",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
python inference.py --single # Interactive single prediction
python inference.py --batch input.csv output.csv # Batch prediction
python inference.py --sample # Run with sample data
"""
)
parser.add_argument('--single', action='store_true',
help='Interactive single prediction mode')
parser.add_argument('--batch', nargs=2, metavar=('INPUT', 'OUTPUT'),
help='Batch prediction mode: INPUT_FILE OUTPUT_FILE')
parser.add_argument('--sample', action='store_true',
help='Run prediction with sample data')
parser.add_argument('--model-path', default='bin/best_checkpoint.pth',
help='Path to model checkpoint (default: bin/best_checkpoint.pth)')
args = parser.parse_args()
# Check if no arguments provided
if not any([args.single, args.batch, args.sample]):
parser.print_help()
return
try:
# Initialize predictor
print("πŸš€ Initializing Loan Predictor...")
predictor = LoanPredictor(model_path=args.model_path)
# Execute based on mode
if args.single:
interactive_prediction(predictor)
elif args.batch:
batch_prediction(predictor, args.batch[0], args.batch[1])
elif args.sample:
sample_prediction(predictor)
except Exception as e:
print(f"πŸ’₯ Fatal error: {str(e)}")
sys.exit(1)
if __name__ == "__main__":
main()