Spaces:
Sleeping
Sleeping
doc: architecture
Browse files- Architecture_Recommendations.md +188 -0
Architecture_Recommendations.md
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Neural Network Architecture Recommendations for Loan Prediction
|
2 |
+
|
3 |
+
## Dataset Characteristics (Key Factors for Architecture Design)
|
4 |
+
|
5 |
+
- **Input Features**: 9 carefully selected numerical features
|
6 |
+
- **Training Samples**: 316,824 (large dataset)
|
7 |
+
- **Test Samples**: 79,206
|
8 |
+
- **Problem Type**: Binary classification
|
9 |
+
- **Class Distribution**: 80.4% Fully Paid, 19.6% Charged Off (moderate imbalance)
|
10 |
+
- **Feature Correlations**: Low to moderate (max 0.632)
|
11 |
+
- **Data Quality**: Clean, standardized, no missing values
|
12 |
+
|
13 |
+
## Recommended Architecture: Moderate Deep Network
|
14 |
+
|
15 |
+
### Architecture Overview
|
16 |
+
|
17 |
+
```
|
18 |
+
Input Layer (9 neurons)
|
19 |
+
β
|
20 |
+
Hidden Layer 1 (64 neurons, ReLU)
|
21 |
+
β
|
22 |
+
Dropout (0.3)
|
23 |
+
β
|
24 |
+
Hidden Layer 2 (32 neurons, ReLU)
|
25 |
+
β
|
26 |
+
Dropout (0.2)
|
27 |
+
β
|
28 |
+
Hidden Layer 3 (16 neurons, ReLU)
|
29 |
+
β
|
30 |
+
Dropout (0.1)
|
31 |
+
β
|
32 |
+
Output Layer (1 neuron, Sigmoid)
|
33 |
+
```
|
34 |
+
|
35 |
+
## Detailed Architecture Justification
|
36 |
+
|
37 |
+
### 1. Network Depth: 3 Hidden Layers
|
38 |
+
**Why this choice:**
|
39 |
+
- **Sufficient complexity**: Financial relationships often involve non-linear interactions
|
40 |
+
- **Large dataset**: 316k samples can support deeper networks without overfitting
|
41 |
+
- **Not too deep**: Avoids vanishing gradient problems with tabular data
|
42 |
+
- **Sweet spot**: Balances complexity with training stability
|
43 |
+
|
44 |
+
### 2. Layer Sizes: [64, 32, 16]
|
45 |
+
**Rationale:**
|
46 |
+
- **Funnel architecture**: Progressively reduces dimensionality (9β64β32β16β1)
|
47 |
+
- **Power of 2 sizes**: Computationally efficient, standard practice
|
48 |
+
- **64 first layer**: 7x input size allows good feature expansion
|
49 |
+
- **Progressive reduction**: Enables hierarchical feature learning
|
50 |
+
- **16 final layer**: Sufficient bottleneck before final decision
|
51 |
+
|
52 |
+
### 3. Activation Functions
|
53 |
+
**ReLU for Hidden Layers:**
|
54 |
+
- **Computational efficiency**: Faster than sigmoid/tanh
|
55 |
+
- **Avoids vanishing gradients**: Critical for deeper networks
|
56 |
+
- **Sparsity**: Creates sparse representations
|
57 |
+
- **Standard choice**: Proven effective for tabular data
|
58 |
+
|
59 |
+
**Sigmoid for Output:**
|
60 |
+
- **Binary classification**: Perfect for probability output [0,1]
|
61 |
+
- **Smooth gradients**: Better than step function
|
62 |
+
- **Interpretable**: Direct probability interpretation
|
63 |
+
|
64 |
+
### 4. Dropout Strategy: [0.3, 0.2, 0.1]
|
65 |
+
**Progressive dropout rates:**
|
66 |
+
- **Higher early dropout (0.3)**: Prevents early layer overfitting
|
67 |
+
- **Reducing rates**: Allows final layers to learn refined patterns
|
68 |
+
- **Conservative final dropout**: Preserves important final representations
|
69 |
+
- **Prevents overfitting**: Critical with large dataset
|
70 |
+
|
71 |
+
### 5. Regularization Considerations
|
72 |
+
**Additional techniques to consider:**
|
73 |
+
- **L2 regularization**: Weight decay of 1e-4 to 1e-5
|
74 |
+
- **Batch normalization**: For training stability (optional)
|
75 |
+
- **Early stopping**: Monitor validation loss
|
76 |
+
|
77 |
+
## Alternative Architectures
|
78 |
+
|
79 |
+
### Option 1: Lighter Network (Faster Training)
|
80 |
+
```
|
81 |
+
Input (9) β Dense(32, ReLU) β Dropout(0.2) β Dense(16, ReLU) β Dropout(0.1) β Output(1, Sigmoid)
|
82 |
+
```
|
83 |
+
**When to use:** If training time is critical or simpler patterns suffice
|
84 |
+
|
85 |
+
### Option 2: Deeper Network (Maximum Performance)
|
86 |
+
```
|
87 |
+
Input (9) β Dense(128, ReLU) β Dropout(0.3) β Dense(64, ReLU) β Dropout(0.3) β
|
88 |
+
Dense(32, ReLU) β Dropout(0.2) β Dense(16, ReLU) β Dropout(0.1) β Output(1, Sigmoid)
|
89 |
+
```
|
90 |
+
**When to use:** If computational resources are abundant and maximum accuracy is needed
|
91 |
+
|
92 |
+
### Option 3: Wide Network (Feature Interactions)
|
93 |
+
```
|
94 |
+
Input (9) β Dense(128, ReLU) β Dropout(0.3) β Dense(128, ReLU) β Dropout(0.2) β
|
95 |
+
Dense(64, ReLU) β Dropout(0.1) β Output(1, Sigmoid)
|
96 |
+
```
|
97 |
+
**When to use:** To capture more complex feature interactions
|
98 |
+
|
99 |
+
## Training Hyperparameters
|
100 |
+
|
101 |
+
### Learning Rate Strategy
|
102 |
+
- **Initial rate**: 0.001 (Adam optimizer default)
|
103 |
+
- **Schedule**: ReduceLROnPlateau (factor=0.5, patience=10)
|
104 |
+
- **Minimum rate**: 1e-6
|
105 |
+
|
106 |
+
### Batch Size
|
107 |
+
- **Recommended**: 512 or 1024
|
108 |
+
- **Rationale**: Large dataset allows bigger batches for stable gradients
|
109 |
+
- **Memory consideration**: Adjust based on GPU/CPU capacity
|
110 |
+
|
111 |
+
### Optimizer
|
112 |
+
- **Adam**: Best for most scenarios
|
113 |
+
- **Alternative**: AdamW with weight decay
|
114 |
+
- **Why Adam**: Adaptive learning rates, momentum, proven with neural networks
|
115 |
+
|
116 |
+
### Loss Function
|
117 |
+
- **Binary Cross-Entropy**: Standard for binary classification
|
118 |
+
- **Class weights**: Consider class_weight='balanced' due to 80/20 split
|
119 |
+
- **Alternative**: Focal loss if class imbalance becomes problematic
|
120 |
+
|
121 |
+
### Training Strategy
|
122 |
+
- **Epochs**: Start with 100, use early stopping
|
123 |
+
- **Validation split**: 20% of training data
|
124 |
+
- **Early stopping**: Patience of 15-20 epochs
|
125 |
+
- **Metrics**: Track accuracy, precision, recall, AUC-ROC
|
126 |
+
|
127 |
+
## Why This Architecture is Optimal
|
128 |
+
|
129 |
+
### 1. **Matches Data Complexity**
|
130 |
+
- 9 features suggest moderate complexity needs
|
131 |
+
- Network size proportional to feature count
|
132 |
+
- Sufficient depth for non-linear patterns
|
133 |
+
|
134 |
+
### 2. **Handles Class Imbalance**
|
135 |
+
- Dropout prevents majority class overfitting
|
136 |
+
- Multiple layers allow nuanced decision boundaries
|
137 |
+
- Sufficient capacity for minority class patterns
|
138 |
+
|
139 |
+
### 3. **Computational Efficiency**
|
140 |
+
- Not overly complex for the problem
|
141 |
+
- Reasonable training time
|
142 |
+
- Good inference speed
|
143 |
+
|
144 |
+
### 4. **Generalization Ability**
|
145 |
+
- Progressive dropout prevents overfitting
|
146 |
+
- Balanced depth/width ratio
|
147 |
+
- Suitable regularization
|
148 |
+
|
149 |
+
### 5. **Financial Domain Appropriate**
|
150 |
+
- Conservative architecture (financial decisions need reliability)
|
151 |
+
- Interpretable through feature importance analysis
|
152 |
+
- Robust to noise in financial data
|
153 |
+
|
154 |
+
## Expected Performance
|
155 |
+
|
156 |
+
### Baseline Expectations
|
157 |
+
- **Accuracy**: 82-85% (better than 80% baseline)
|
158 |
+
- **AUC-ROC**: 0.65-0.75 (good discrimination)
|
159 |
+
- **Precision**: 85-90% (low false positives important)
|
160 |
+
- **Recall**: 75-85% (catch most defaults)
|
161 |
+
|
162 |
+
### Performance Monitoring
|
163 |
+
- **Validation curves**: Should show convergence without overfitting
|
164 |
+
- **Learning curves**: Should indicate sufficient training data
|
165 |
+
- **Confusion matrix**: Should show balanced performance across classes
|
166 |
+
|
167 |
+
## Implementation Recommendations
|
168 |
+
|
169 |
+
### 1. Start Simple
|
170 |
+
- Begin with recommended architecture
|
171 |
+
- Establish baseline performance
|
172 |
+
- Iteratively increase complexity if needed
|
173 |
+
|
174 |
+
### 2. Systematic Tuning
|
175 |
+
- First optimize architecture (layers, neurons)
|
176 |
+
- Then tune training hyperparameters
|
177 |
+
- Finally adjust regularization
|
178 |
+
|
179 |
+
### 3. Cross-Validation
|
180 |
+
- Use stratified k-fold (k=5) for robust evaluation
|
181 |
+
- Ensures consistent performance across different data splits
|
182 |
+
|
183 |
+
### 4. Feature Importance
|
184 |
+
- Analyze trained network feature importance
|
185 |
+
- Validates feature selection from EDA
|
186 |
+
- Identifies potential for further feature engineering
|
187 |
+
|
188 |
+
This architecture provides an excellent balance of complexity, performance, and reliability for your loan prediction problem.
|