nullHawk commited on
Commit
a86561a
Β·
1 Parent(s): 33206e3

doc: architecture

Browse files
Files changed (1) hide show
  1. Architecture_Recommendations.md +188 -0
Architecture_Recommendations.md ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Neural Network Architecture Recommendations for Loan Prediction
2
+
3
+ ## Dataset Characteristics (Key Factors for Architecture Design)
4
+
5
+ - **Input Features**: 9 carefully selected numerical features
6
+ - **Training Samples**: 316,824 (large dataset)
7
+ - **Test Samples**: 79,206
8
+ - **Problem Type**: Binary classification
9
+ - **Class Distribution**: 80.4% Fully Paid, 19.6% Charged Off (moderate imbalance)
10
+ - **Feature Correlations**: Low to moderate (max 0.632)
11
+ - **Data Quality**: Clean, standardized, no missing values
12
+
13
+ ## Recommended Architecture: Moderate Deep Network
14
+
15
+ ### Architecture Overview
16
+
17
+ ```
18
+ Input Layer (9 neurons)
19
+ ↓
20
+ Hidden Layer 1 (64 neurons, ReLU)
21
+ ↓
22
+ Dropout (0.3)
23
+ ↓
24
+ Hidden Layer 2 (32 neurons, ReLU)
25
+ ↓
26
+ Dropout (0.2)
27
+ ↓
28
+ Hidden Layer 3 (16 neurons, ReLU)
29
+ ↓
30
+ Dropout (0.1)
31
+ ↓
32
+ Output Layer (1 neuron, Sigmoid)
33
+ ```
34
+
35
+ ## Detailed Architecture Justification
36
+
37
+ ### 1. Network Depth: 3 Hidden Layers
38
+ **Why this choice:**
39
+ - **Sufficient complexity**: Financial relationships often involve non-linear interactions
40
+ - **Large dataset**: 316k samples can support deeper networks without overfitting
41
+ - **Not too deep**: Avoids vanishing gradient problems with tabular data
42
+ - **Sweet spot**: Balances complexity with training stability
43
+
44
+ ### 2. Layer Sizes: [64, 32, 16]
45
+ **Rationale:**
46
+ - **Funnel architecture**: Progressively reduces dimensionality (9β†’64β†’32β†’16β†’1)
47
+ - **Power of 2 sizes**: Computationally efficient, standard practice
48
+ - **64 first layer**: 7x input size allows good feature expansion
49
+ - **Progressive reduction**: Enables hierarchical feature learning
50
+ - **16 final layer**: Sufficient bottleneck before final decision
51
+
52
+ ### 3. Activation Functions
53
+ **ReLU for Hidden Layers:**
54
+ - **Computational efficiency**: Faster than sigmoid/tanh
55
+ - **Avoids vanishing gradients**: Critical for deeper networks
56
+ - **Sparsity**: Creates sparse representations
57
+ - **Standard choice**: Proven effective for tabular data
58
+
59
+ **Sigmoid for Output:**
60
+ - **Binary classification**: Perfect for probability output [0,1]
61
+ - **Smooth gradients**: Better than step function
62
+ - **Interpretable**: Direct probability interpretation
63
+
64
+ ### 4. Dropout Strategy: [0.3, 0.2, 0.1]
65
+ **Progressive dropout rates:**
66
+ - **Higher early dropout (0.3)**: Prevents early layer overfitting
67
+ - **Reducing rates**: Allows final layers to learn refined patterns
68
+ - **Conservative final dropout**: Preserves important final representations
69
+ - **Prevents overfitting**: Critical with large dataset
70
+
71
+ ### 5. Regularization Considerations
72
+ **Additional techniques to consider:**
73
+ - **L2 regularization**: Weight decay of 1e-4 to 1e-5
74
+ - **Batch normalization**: For training stability (optional)
75
+ - **Early stopping**: Monitor validation loss
76
+
77
+ ## Alternative Architectures
78
+
79
+ ### Option 1: Lighter Network (Faster Training)
80
+ ```
81
+ Input (9) β†’ Dense(32, ReLU) β†’ Dropout(0.2) β†’ Dense(16, ReLU) β†’ Dropout(0.1) β†’ Output(1, Sigmoid)
82
+ ```
83
+ **When to use:** If training time is critical or simpler patterns suffice
84
+
85
+ ### Option 2: Deeper Network (Maximum Performance)
86
+ ```
87
+ Input (9) β†’ Dense(128, ReLU) β†’ Dropout(0.3) β†’ Dense(64, ReLU) β†’ Dropout(0.3) β†’
88
+ Dense(32, ReLU) β†’ Dropout(0.2) β†’ Dense(16, ReLU) β†’ Dropout(0.1) β†’ Output(1, Sigmoid)
89
+ ```
90
+ **When to use:** If computational resources are abundant and maximum accuracy is needed
91
+
92
+ ### Option 3: Wide Network (Feature Interactions)
93
+ ```
94
+ Input (9) β†’ Dense(128, ReLU) β†’ Dropout(0.3) β†’ Dense(128, ReLU) β†’ Dropout(0.2) β†’
95
+ Dense(64, ReLU) β†’ Dropout(0.1) β†’ Output(1, Sigmoid)
96
+ ```
97
+ **When to use:** To capture more complex feature interactions
98
+
99
+ ## Training Hyperparameters
100
+
101
+ ### Learning Rate Strategy
102
+ - **Initial rate**: 0.001 (Adam optimizer default)
103
+ - **Schedule**: ReduceLROnPlateau (factor=0.5, patience=10)
104
+ - **Minimum rate**: 1e-6
105
+
106
+ ### Batch Size
107
+ - **Recommended**: 512 or 1024
108
+ - **Rationale**: Large dataset allows bigger batches for stable gradients
109
+ - **Memory consideration**: Adjust based on GPU/CPU capacity
110
+
111
+ ### Optimizer
112
+ - **Adam**: Best for most scenarios
113
+ - **Alternative**: AdamW with weight decay
114
+ - **Why Adam**: Adaptive learning rates, momentum, proven with neural networks
115
+
116
+ ### Loss Function
117
+ - **Binary Cross-Entropy**: Standard for binary classification
118
+ - **Class weights**: Consider class_weight='balanced' due to 80/20 split
119
+ - **Alternative**: Focal loss if class imbalance becomes problematic
120
+
121
+ ### Training Strategy
122
+ - **Epochs**: Start with 100, use early stopping
123
+ - **Validation split**: 20% of training data
124
+ - **Early stopping**: Patience of 15-20 epochs
125
+ - **Metrics**: Track accuracy, precision, recall, AUC-ROC
126
+
127
+ ## Why This Architecture is Optimal
128
+
129
+ ### 1. **Matches Data Complexity**
130
+ - 9 features suggest moderate complexity needs
131
+ - Network size proportional to feature count
132
+ - Sufficient depth for non-linear patterns
133
+
134
+ ### 2. **Handles Class Imbalance**
135
+ - Dropout prevents majority class overfitting
136
+ - Multiple layers allow nuanced decision boundaries
137
+ - Sufficient capacity for minority class patterns
138
+
139
+ ### 3. **Computational Efficiency**
140
+ - Not overly complex for the problem
141
+ - Reasonable training time
142
+ - Good inference speed
143
+
144
+ ### 4. **Generalization Ability**
145
+ - Progressive dropout prevents overfitting
146
+ - Balanced depth/width ratio
147
+ - Suitable regularization
148
+
149
+ ### 5. **Financial Domain Appropriate**
150
+ - Conservative architecture (financial decisions need reliability)
151
+ - Interpretable through feature importance analysis
152
+ - Robust to noise in financial data
153
+
154
+ ## Expected Performance
155
+
156
+ ### Baseline Expectations
157
+ - **Accuracy**: 82-85% (better than 80% baseline)
158
+ - **AUC-ROC**: 0.65-0.75 (good discrimination)
159
+ - **Precision**: 85-90% (low false positives important)
160
+ - **Recall**: 75-85% (catch most defaults)
161
+
162
+ ### Performance Monitoring
163
+ - **Validation curves**: Should show convergence without overfitting
164
+ - **Learning curves**: Should indicate sufficient training data
165
+ - **Confusion matrix**: Should show balanced performance across classes
166
+
167
+ ## Implementation Recommendations
168
+
169
+ ### 1. Start Simple
170
+ - Begin with recommended architecture
171
+ - Establish baseline performance
172
+ - Iteratively increase complexity if needed
173
+
174
+ ### 2. Systematic Tuning
175
+ - First optimize architecture (layers, neurons)
176
+ - Then tune training hyperparameters
177
+ - Finally adjust regularization
178
+
179
+ ### 3. Cross-Validation
180
+ - Use stratified k-fold (k=5) for robust evaluation
181
+ - Ensures consistent performance across different data splits
182
+
183
+ ### 4. Feature Importance
184
+ - Analyze trained network feature importance
185
+ - Validates feature selection from EDA
186
+ - Identifies potential for further feature engineering
187
+
188
+ This architecture provides an excellent balance of complexity, performance, and reliability for your loan prediction problem.