import torch import os from model import PotterGPT, Config, CharacterLevelTokenizer from tokenizers import Tokenizer from dataclasses import dataclass model_path = 'potterGPT/potterGPT.pth' with open('data/harry_potter_data', 'r', encoding='utf-8') as f: data = f.read() tokenizer = CharacterLevelTokenizer(data) lm = PotterGPT(Config) state_dict = torch.load(model_path, map_location='cpu') lm.load_state_dict(state_dict) generated_texts = [] for length in [1000]: generated = lm.generate( torch.zeros((1,1),dtype=torch.long,device='cpu') + 61, # initial context 0, 61 is \n total=length ) generated = tokenizer.decode(generated[0].cpu().numpy()) text=f'generated ({length} tokens)\n{"="*50}\n{generated}\n{"="*50}\n\n' generated_texts.append(text) print(generated_texts[0]) os.makedirs('output', exist_ok=True) with open('output/generated.txt', 'w+') as f: for text in generated_texts: f.write(text)