import torch import gradio as gr from model import CharacterLevelTokenizer, PotterGPT, Config class GradioApp(): def __init__(self): # Set up configuration and data self.model_path = 'potterGPT/potterGPT.pth' with open('data/harry_potter_data', 'r', encoding='utf-8') as f: data = f.read() self.tokenizer = CharacterLevelTokenizer(data) self.lm = PotterGPT(Config) state_dict = torch.load(self.model_path, map_location='cpu') self.lm.load_state_dict(state_dict) def launch(self): # Define Gradio interface without a clear button with gr.Blocks() as demo: gr.Markdown("# potterGPT v0") gr.Markdown("Click the button to generate a text prompt using the potterGPT model.") generate_button = gr.Button("Generate") output_text = gr.Textbox(label="Generated Text") generate_button.click(self.generate_text, inputs=None, outputs=output_text) demo.launch() def generate_text(self, input=None): """Generate text using the trained model.""" generated_texts = [] for length in [1000]: generated = self.lm.generate( torch.zeros((1,1),dtype=torch.long,device='cpu') + 61, # initial context 0, 61 is \n total=length ) generated = self.tokenizer.decode(generated[0].cpu().numpy()) text = f'generated ({length} tokens)\n{"="*50}\n{generated}\n{"="*50}\n\n' generated_texts.append(text) return generated_texts[0] if __name__ == '__main__': app = GradioApp() app.launch()