Alexandre-Numind commited on
Commit
111fbee
·
verified ·
1 Parent(s): 64d8609

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -5
app.py CHANGED
@@ -14,9 +14,9 @@ from examples import examples as input_examples
14
  from nuextract_logging import log_event
15
 
16
 
17
- MAX_INPUT_SIZE = 10_000
18
- MAX_NEW_TOKENS = 4_000
19
- MAX_WINDOW_SIZE = 4_000
20
 
21
  markdown_description = """
22
  <!DOCTYPE html>
@@ -139,13 +139,13 @@ model = AutoModelForCausalLM.from_pretrained(model_name,
139
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
140
  model.eval()
141
 
142
- def gradio_interface_function(template, text, is_example):
143
  if len(tokenizer.tokenize(text)) > MAX_INPUT_SIZE:
144
  yield "", "Input text too long for space. Download model to use unrestricted.", ""
145
  return # End the function since there was an error
146
 
147
  # Initialize the sliding window prediction process
148
- prediction_generator = sliding_window_prediction(template, text, model, tokenizer, window_size=MAX_WINDOW_SIZE)
149
 
150
  # Iterate over the generator to return values at each step
151
  for progress, full_pred, html_content in prediction_generator:
@@ -163,6 +163,7 @@ iface = gr.Interface(
163
  inputs=[
164
  gr.Textbox(lines=2, placeholder="Enter Template here...", label="Template"),
165
  gr.Textbox(lines=2, placeholder="Enter input Text here...", label="Input Text"),
 
166
  gr.Checkbox(label="Is Example?", visible=False),
167
  ],
168
  outputs=[
 
14
  from nuextract_logging import log_event
15
 
16
 
17
+ MAX_INPUT_SIZE = 100_000
18
+ MAX_NEW_TOKENS = 8_000
19
+ MAX_WINDOW_SIZE = 1_000
20
 
21
  markdown_description = """
22
  <!DOCTYPE html>
 
139
  tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=auth_token)
140
  model.eval()
141
 
142
+ def gradio_interface_function(template, text, size, is_example):
143
  if len(tokenizer.tokenize(text)) > MAX_INPUT_SIZE:
144
  yield "", "Input text too long for space. Download model to use unrestricted.", ""
145
  return # End the function since there was an error
146
 
147
  # Initialize the sliding window prediction process
148
+ prediction_generator = sliding_window_prediction(template, text, model, tokenizer, window_size=size)
149
 
150
  # Iterate over the generator to return values at each step
151
  for progress, full_pred, html_content in prediction_generator:
 
163
  inputs=[
164
  gr.Textbox(lines=2, placeholder="Enter Template here...", label="Template"),
165
  gr.Textbox(lines=2, placeholder="Enter input Text here...", label="Input Text"),
166
+ gr.Textbox(lines=2, placeholder="Enter windows size here...", label="Size"),
167
  gr.Checkbox(label="Is Example?", visible=False),
168
  ],
169
  outputs=[