Spaces:
Runtime error
Runtime error
File size: 5,004 Bytes
f8e10f0 21dc656 f8e10f0 21dc656 6359d57 28306fd 21dc656 6359d57 f8e10f0 21dc656 6359d57 21dc656 f8e10f0 21dc656 f8e10f0 21dc656 f8e10f0 21dc656 f8e10f0 21dc656 f8e10f0 21dc656 f8e10f0 21dc656 f8e10f0 21dc656 f8e10f0 21dc656 6359d57 21dc656 6359d57 21dc656 6359d57 21dc656 f8e10f0 21dc656 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import gradio as gr
import os
import spaces
from transformers import GemmaTokenizer, AutoModelForCausalLM
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
# Set an environment variable
HF_TOKEN = os.environ.get("HF_TOKEN", None)
DESCRIPTION = '''
<div>
<h1 style="text-align: center;">HugCode</h1>
<p>CodeLLaMA sfted on <a href="https://huggingface.co/datasets/nuojohnchen/hugcode-codesft"><b>HugCode</b></a> data. Made in 2023.9. </p>
</div>
'''
# LICENSE = """
# <p/>
# ---
# Built with Meta Llama 3
# """
PLACEHOLDER = """
<div style="padding: 30px; text-align: center; display: flex; flex-direction: column; align-items: center;">
<img src="https://ysharma-dummy-chat-app.hf.space/file=/tmp/gradio/8e75e61cc9bab22b7ce3dec85ab0e6db1da5d107/Meta_lockup_positive%20primary_RGB.jpg" style="width: 80%; max-width: 550px; height: auto; opacity: 0.55; ">
<h1 style="font-size: 28px; margin-bottom: 2px; opacity: 0.55;">HugCode</h1>
<p style="font-size: 18px; margin-bottom: 2px; opacity: 0.65;">Ask me code questions (English/Chinese).</p>
</div>
"""
css = """
h1 {
text-align: center;
display: block;
}
#duplicate-button {
margin: auto;
color: white;
background: #1565c0;
border-radius: 100vh;
}
"""
# Load the tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3")
model = AutoModelForCausalLM.from_pretrained("nuojohnchen/codellama-7b-sft-v1.3", device_map="auto") # to("cuda:0")
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
@spaces.GPU(duration=120)
def chat_llama3_8b(message: str,
history: list,
temperature: float,
max_new_tokens: int
) -> str:
"""
Generate a streaming response using the llama3-8b model.
Args:
message (str): The input message.
history (list): The conversation history used by ChatInterface.
temperature (float): The temperature for generating the response.
max_new_tokens (int): The maximum number of new tokens to generate.
Returns:
str: The generated response.
"""
# Build conversation as pure array format
history_messages = []
for user, assistant in history:
history_messages.extend(assistant)
# conversation = [
# message, # ε½εζΆζ―
# history_messages # εε²ζΆζ―ζ°η»
# ]
conversation = ""
for user, assistant in history:
conversation += f"User: {user}\nAssistant: {assistant}<|endoftext|>\n"
conversation += f"User: {message}\nAssistant: "
tokenizer.chat_template = "User:{query}\nAssistant:{response}<|endoftext|>"
input_ids = tokenizer.encode(conversation, return_tensors="pt").to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
input_ids= input_ids,
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
temperature=temperature,
eos_token_id=terminators,
)
# This will enforce greedy generation (do_sample=False) when the temperature is passed 0, avoiding the crash.
if temperature == 0:
generate_kwargs['do_sample'] = False
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
#print(outputs)
yield "".join(outputs)
# Gradio block
chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True, css=css) as demo:
gr.Markdown(DESCRIPTION)
# gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
gr.ChatInterface(
fn=chat_llama3_8b,
chatbot=chatbot,
fill_height=True,
additional_inputs_accordion=gr.Accordion(label="βοΈ Parameters", open=False, render=False),
additional_inputs=[
gr.Slider(minimum=0,
maximum=1,
step=0.1,
value=0.95,
label="Temperature",
render=False),
gr.Slider(minimum=128,
maximum=4096,
step=1,
value=512,
label="Max new tokens",
render=False ),
],
examples=[
['Build a REST API that allows users to manage their to-do lists.'],
['Implement a machine learning model to predict stock prices based on historical data.'],
['Develop a web application that allows users to upload images and apply various filters.']
],
cache_examples=False,
)
# gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.launch() |