Spaces:
Build error
Build error
from __future__ import annotations | |
import gc | |
import pathlib | |
import sys | |
import gradio as gr | |
import PIL.Image | |
import numpy as np | |
import torch | |
from diffusers import StableDiffusionPipeline | |
sys.path.insert(0, 'custom-diffusion') | |
def load_model(text_encoder, tokenizer, unet, save_path, modifier_token, freeze_model='crossattn_kv'): | |
st = torch.load(save_path) | |
if 'text_encoder' in st: | |
text_encoder.load_state_dict(st['text_encoder']) | |
if modifier_token in st: | |
_ = tokenizer.add_tokens(modifier_token) | |
modifier_token_id = tokenizer.convert_tokens_to_ids(modifier_token) | |
# Resize the token embeddings as we are adding new special tokens to the tokenizer | |
text_encoder.resize_token_embeddings(len(tokenizer)) | |
token_embeds = text_encoder.get_input_embeddings().weight.data | |
token_embeds[modifier_token_id] = st[modifier_token] | |
print(st.keys()) | |
for name, params in unet.named_parameters(): | |
if freeze_model == 'crossattn': | |
if 'attn2' in name: | |
params.data.copy_(st['unet'][f'{name}']) | |
else: | |
if 'attn2.to_k' in name or 'attn2.to_v' in name: | |
params.data.copy_(st['unet'][f'{name}']) | |
class InferencePipeline: | |
def __init__(self): | |
self.pipe = None | |
self.device = torch.device( | |
'cuda:0' if torch.cuda.is_available() else 'cpu') | |
self.weight_path = None | |
def clear(self) -> None: | |
self.weight_path = None | |
del self.pipe | |
self.pipe = None | |
torch.cuda.empty_cache() | |
gc.collect() | |
def get_weight_path(name: str) -> pathlib.Path: | |
curr_dir = pathlib.Path(__file__).parent | |
return curr_dir / name | |
def load_pipe(self, model_id: str, filename: str) -> None: | |
weight_path = self.get_weight_path(filename) | |
if weight_path == self.weight_path: | |
return | |
self.weight_path = weight_path | |
weight = torch.load(self.weight_path, map_location=self.device) | |
if self.device.type == 'cpu': | |
pipe = StableDiffusionPipeline.from_pretrained(model_id) | |
else: | |
pipe = StableDiffusionPipeline.from_pretrained( | |
model_id, torch_dtype=torch.float16) | |
pipe = pipe.to(self.device) | |
load_model(pipe.text_encoder, pipe.tokenizer, pipe.unet, weight_path, '<new1>') | |
self.pipe = pipe | |
def run( | |
self, | |
base_model: str, | |
weight_name: str, | |
prompt: str, | |
seed: int, | |
n_steps: int, | |
guidance_scale: float, | |
eta: float, | |
batch_size: int, | |
) -> PIL.Image.Image: | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
self.load_pipe(base_model, weight_name) | |
generator = torch.Generator(device=self.device).manual_seed(seed) | |
out = self.pipe([prompt]*batch_size, | |
num_inference_steps=n_steps, | |
guidance_scale=guidance_scale, | |
eta = eta, | |
generator=generator) # type: ignore | |
out = out.images | |
out = PIL.Image.fromarray(np.hstack([np.array(x) for x in out])) | |
return out | |