Spaces:
Build error
Build error
from __future__ import annotations | |
import os | |
import pathlib | |
import shlex | |
import shutil | |
import subprocess | |
import gradio as gr | |
import PIL.Image | |
import torch | |
os.environ['PYTHONPATH'] = f'custom-diffusion:{os.getenv("PYTHONPATH", "")}' | |
def pad_image(image: PIL.Image.Image) -> PIL.Image.Image: | |
w, h = image.size | |
if w == h: | |
return image | |
elif w > h: | |
new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0)) | |
new_image.paste(image, (0, (w - h) // 2)) | |
return new_image | |
else: | |
new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0)) | |
new_image.paste(image, ((h - w) // 2, 0)) | |
return new_image | |
class Trainer: | |
def __init__(self): | |
self.is_running = False | |
self.is_running_message = 'Another training is in progress.' | |
self.output_dir = pathlib.Path('results') | |
self.instance_data_dir = self.output_dir / 'training_data' | |
self.class_data_dir = self.output_dir / 'regularization_data' | |
def check_if_running(self) -> dict: | |
if self.is_running: | |
return gr.update(value=self.is_running_message) | |
else: | |
return gr.update(value='No training is running.') | |
def cleanup_dirs(self) -> None: | |
shutil.rmtree(self.output_dir, ignore_errors=True) | |
def prepare_dataset(self, concept_images: list, resolution: int) -> None: | |
self.instance_data_dir.mkdir(parents=True) | |
for i, temp_path in enumerate(concept_images): | |
image = PIL.Image.open(temp_path.name) | |
image = pad_image(image) | |
image = image.resize((resolution, resolution)) | |
image = image.convert('RGB') | |
out_path = self.instance_data_dir / f'{i:03d}.jpg' | |
image.save(out_path, format='JPEG', quality=100) | |
def run( | |
self, | |
base_model: str, | |
resolution_s: str, | |
concept_images: list | None, | |
concept_prompt: str, | |
class_prompt: str, | |
n_steps: int, | |
learning_rate: float, | |
train_text_encoder: bool, | |
modifier_token: bool, | |
gradient_accumulation: int, | |
batch_size: int, | |
use_8bit_adam: bool, | |
gradient_checkpointing: bool, | |
) -> tuple[dict, list[pathlib.Path]]: | |
if not torch.cuda.is_available(): | |
raise gr.Error('CUDA is not available.') | |
if self.is_running: | |
return gr.update(value=self.is_running_message), [] | |
if concept_images is None: | |
raise gr.Error('You need to upload images.') | |
if not concept_prompt: | |
raise gr.Error('The concept prompt is missing.') | |
resolution = int(resolution_s) | |
self.cleanup_dirs() | |
self.prepare_dataset(concept_images, resolution) | |
command = f''' | |
accelerate launch custom-diffusion/src/diffuser_training.py \ | |
--pretrained_model_name_or_path={base_model} \ | |
--instance_data_dir={self.instance_data_dir} \ | |
--output_dir={self.output_dir} \ | |
--instance_prompt="{concept_prompt}" \ | |
--class_data_dir={self.class_data_dir} \ | |
--with_prior_preservation --real_prior --prior_loss_weight=1.0 \ | |
--class_prompt="{class_prompt}" \ | |
--resolution={resolution} \ | |
--train_batch_size={batch_size} \ | |
--gradient_accumulation_steps={gradient_accumulation} \ | |
--learning_rate={learning_rate} \ | |
--lr_scheduler="constant" \ | |
--lr_warmup_steps=0 \ | |
--max_train_steps={n_steps} \ | |
--num_class_images=200 \ | |
--scale_lr | |
''' | |
if modifier_token: | |
command += ' --modifier_token "<new1>"' | |
if use_8bit_adam: | |
command += ' --use_8bit_adam' | |
if train_text_encoder: | |
command += f' --train_text_encoder' | |
if gradient_checkpointing: | |
command += f' --gradient_checkpointing' | |
with open(self.output_dir / 'train.sh', 'w') as f: | |
command_s = ' '.join(command.split()) | |
f.write(command_s) | |
self.is_running = True | |
res = subprocess.run(shlex.split(command)) | |
self.is_running = False | |
if res.returncode == 0: | |
result_message = 'Training Completed!' | |
else: | |
result_message = 'Training Failed!' | |
weight_paths = sorted(self.output_dir.glob('*.bin')) | |
return gr.update(value=result_message), weight_paths | |