Spaces:
Sleeping
Sleeping
File size: 2,353 Bytes
9138533 1d4b843 9138533 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import torch
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
from transformers import pipeline
analyzer = pipeline("text-classification",model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
# model_path = ("../.venv/Models/models--distilbert--distilbert-base-uncased-finetuned-sst-2-english/snapshots/714eb0fa89d2f80546fda750413ed43d93601a13")
# analyzer = pipeline("text-classification",model=model_path)
# print(analyzer(["This production is good", "This product was quite expensive"]))
def sentiment_analyzer(review):
sentiment = analyzer(review)
return sentiment[0]['label']
def sentiment_bar_chart(df):
sentiment_counts = df['Sentiment'].value_counts()
# Create a bar chart
fig, ax = plt.subplots()
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%')
ax.set_title('Review Sentiment Counts')
ax.set_xlabel('Sentiment')
ax.set_ylabel('Count')
# ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
# Return the figure object
return fig
def read_reviews_and_analyze_sentiment(file_object):
df = pd.read_excel(file_object)
if 'Review' not in df.columns:
raise ValueError("Excel file must contain a 'Review' column.")
df['Sentiment'] = df['Review'].apply(sentiment_analyzer)
chart_object = sentiment_bar_chart(df)
return df, chart_object
# result = read_reviews_and_analyze_sentiment("../Files/Sentiment_Analysis_Reviews.xlsx")
# print(result)
# df = read_reviews_and_analyze_sentiment('path_to_your_excel_file.xlsx')
# print(df)
demo = gr.Interface(fn=read_reviews_and_analyze_sentiment,
# inputs=[gr.Textbox(label="Input you text/review comment for analysis", lines =4)],
# outputs=[gr.Textbox(label="Sentiment", lines=1)],
inputs=[gr.File(file_types=[".xlsx"], label="Upload your review comment file")],
outputs=[gr.Dataframe(label="Sentiments"), gr.Plot(label="Sentiment Analysis")],
title="Sentiment Analyzer",
description="THIS APPLICATION CAN BE USED TO ANALYZE THE SENTIMENT BASED ON FILE UPLAODED.")
demo.launch()
# Assuming you have a dataframe `df` with appropriate data
# fig = sentiment_bar_chart(df)
# fig.show() # This line is just to visualize the plot in a local environment |