Spaces:
Running
Running
import gradio as gr | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import spaces | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = AutoModelForCausalLM.from_pretrained( | |
"Qwen/Qwen2-0.5B-Instruct", | |
torch_dtype="auto", | |
device_map="auto" | |
).to(device) | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct") | |
def chatbot(user_input, history): | |
system_message = {"role": "system", "content": "You are a helpful assistant."} | |
messages = history + [{"role": "user", "content": user_input}] | |
if len(history) == 0: | |
messages.insert(0, system_message) | |
text = tokenizer.apply_chat_template( | |
messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = tokenizer([text], return_tensors="pt").to(device) | |
attention_mask = torch.ones(model_inputs.input_ids.shape, device=device) | |
generated_ids = model.generate( | |
model_inputs.input_ids, | |
attention_mask=attention_mask, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
history.append({"role": "user", "content": user_input}) | |
history.append({"role": "assistant", "content": response}) | |
gradio_history = [[msg["role"], msg["content"]] for msg in history] | |
return gradio_history, history | |
with gr.Blocks() as demo: | |
chatbot_interface = gr.Chatbot() | |
state = gr.State([]) | |
with gr.Row(): | |
txt = gr.Textbox(show_label=False, placeholder="Ask anything") | |
txt.submit(chatbot, [txt, state], [chatbot_interface, state]) | |
demo.launch() | |