File size: 14,755 Bytes
7bd11ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import re
import urllib
from collections import namedtuple
from enum import Enum
from pathlib import Path
from typing import Generator, List, Union, Tuple

from loguru import logger

FORMATTING_SEQUENCES = {"*", "**", "***", "_", "__", "~~", "||"}
CODE_BLOCK_SEQUENCES = {"`", "``", "```"}
ALL_SEQUENCES = FORMATTING_SEQUENCES | CODE_BLOCK_SEQUENCES
MAX_FORMATTING_SEQUENCE_LENGTH = max(len(seq) for seq in ALL_SEQUENCES)


class SplitCandidates(Enum):
    SPACE = 1
    NEWLINE = 2
    LAST_CHAR = 3


SPLIT_CANDIDATES_PREFRENCE = [
    SplitCandidates.NEWLINE,
    SplitCandidates.SPACE,
    SplitCandidates.LAST_CHAR,
]

BLOCK_SPLIT_CANDIDATES = [r"\n#\s+", r"\n##\s+", r"\n###\s+"]
CODE_BLOCK_LEVEL = 10

MarkdownChunk = namedtuple("MarkdownChunk", "string level")


class SplitCandidateInfo:
    last_seen: int
    active_sequences: List[str]
    active_sequences_length: int

    def __init__(self):
        self.last_seen = None
        self.active_sequences = []
        self.active_sequences_length = 0

    def process_sequence(self, seq: str, is_in_code_block: bool):
        if is_in_code_block:
            if self.active_sequences and seq == self.active_sequences[-1]:
                last_seq = self.active_sequences.pop()
                self.active_sequences_length -= len(last_seq)
            return True
        elif seq in CODE_BLOCK_SEQUENCES:
            self.active_sequences.append(seq)
            self.active_sequences_length += len(seq)
            return True
        else:
            for k in range(len(self.active_sequences) - 1, -1, -1):
                if seq == self.active_sequences[k]:
                    sequences_being_removed = self.active_sequences[k:]
                    self.active_sequences = self.active_sequences[:k]
                    self.active_sequences_length -= sum(
                        len(seq) for seq in sequences_being_removed
                    )
                    return False
            self.active_sequences.append(seq)
            self.active_sequences_length += len(seq)
            return False

    def copy_from(self, other):
        self.last_seen = other.last_seen
        self.active_sequences = other.active_sequences.copy()
        self.active_sequences_length = other.active_sequences_length


def physical_split(markdown: str, max_chunk_size: int) -> Generator[str, None, None]:
    if max_chunk_size <= MAX_FORMATTING_SEQUENCE_LENGTH:
        raise ValueError(
            f"max_chunk_size must be greater than {MAX_FORMATTING_SEQUENCE_LENGTH}"
        )

    split_candidates = {
        SplitCandidates.SPACE: SplitCandidateInfo(),
        SplitCandidates.NEWLINE: SplitCandidateInfo(),
        SplitCandidates.LAST_CHAR: SplitCandidateInfo(),
    }
    is_in_code_block = False

    chunk_start_from, chunk_char_count, chunk_prefix = 0, 0, ""

    def split_chunk():
        for split_variant in SPLIT_CANDIDATES_PREFRENCE:
            split_candidate = split_candidates[split_variant]
            if split_candidate.last_seen is None:
                continue
            chunk_end = split_candidate.last_seen + (
                1 if split_variant == SplitCandidates.LAST_CHAR else 0
            )
            chunk = (
                    chunk_prefix
                    + markdown[chunk_start_from:chunk_end]
                    + "".join(reversed(split_candidate.active_sequences))
            )

            next_chunk_prefix = "".join(split_candidate.active_sequences)
            next_chunk_char_count = len(next_chunk_prefix)
            next_chunk_start_from = chunk_end + (
                0 if split_variant == SplitCandidates.LAST_CHAR else 1
            )

            split_candidates[SplitCandidates.NEWLINE] = SplitCandidateInfo()
            split_candidates[SplitCandidates.SPACE] = SplitCandidateInfo()
            return (
                chunk,
                next_chunk_start_from,
                next_chunk_char_count,
                next_chunk_prefix,
            )

    i = 0
    while i < len(markdown):
        for j in range(MAX_FORMATTING_SEQUENCE_LENGTH, 0, -1):
            seq = markdown[i: i + j]
            if seq in ALL_SEQUENCES:
                last_char_split_candidate_len = (
                        chunk_char_count
                        + split_candidates[
                            SplitCandidates.LAST_CHAR
                        ].active_sequences_length
                        + len(seq)
                )
                if last_char_split_candidate_len >= max_chunk_size:
                    (
                        next_chunk,
                        chunk_start_from,
                        chunk_char_count,
                        chunk_prefix,
                    ) = split_chunk()
                    yield next_chunk
                is_in_code_block = split_candidates[
                    SplitCandidates.LAST_CHAR
                ].process_sequence(seq, is_in_code_block)
                i += len(seq)
                chunk_char_count += len(seq)
                split_candidates[SplitCandidates.LAST_CHAR].last_seen = i - 1
                break

        if i >= len(markdown):
            break

        split_candidates[SplitCandidates.LAST_CHAR].last_seen = i
        chunk_char_count += 1
        if markdown[i] == "\n":
            split_candidates[SplitCandidates.NEWLINE].copy_from(
                split_candidates[SplitCandidates.LAST_CHAR]
            )
        elif markdown[i] == " ":
            split_candidates[SplitCandidates.SPACE].copy_from(
                split_candidates[SplitCandidates.LAST_CHAR]
            )

        last_char_split_candidate_len = (
                chunk_char_count
                + split_candidates[SplitCandidates.LAST_CHAR].active_sequences_length
        )
        if last_char_split_candidate_len == max_chunk_size:
            next_chunk, chunk_start_from, chunk_char_count, chunk_prefix = split_chunk()
            yield next_chunk

        i += 1

    if chunk_start_from < len(markdown):
        yield chunk_prefix + markdown[chunk_start_from:]


def get_logical_blocks_recursively(
        markdown: str, max_chunk_size: int, all_sections: list, split_candidate_index=0
) -> List[MarkdownChunk]:
    if split_candidate_index >= len(BLOCK_SPLIT_CANDIDATES):
        for chunk in physical_split(markdown, max_chunk_size):
            all_sections.append(
                MarkdownChunk(string=chunk, level=split_candidate_index)
            )
        return all_sections
    chunks = []
    add_index = 0
    for add_index, split_candidate in enumerate(
            BLOCK_SPLIT_CANDIDATES[split_candidate_index:]
    ):
        chunks = re.split(split_candidate, markdown)
        if len(chunks) > 1:
            break

    for i, chunk in enumerate(chunks):
        level = split_candidate_index + add_index
        if i > 0:
            level += 1

        prefix = "\n\n" + "#" * level + " "
        if not chunk.strip():
            continue

        if len(chunk) <= max_chunk_size:
            all_sections.append(MarkdownChunk(string=prefix + chunk, level=level - 1))
        else:
            get_logical_blocks_recursively(
                chunk,
                max_chunk_size,
                all_sections,
                split_candidate_index=split_candidate_index + add_index + 1,
            )
    return all_sections


def markdown_splitter(
        path: Union[str, Path], max_chunk_size: int, **additional_splitter_settings
) -> List[dict]:
    try:
        with open(path, "r") as f:
            markdown = f.read()
    except OSError:
        return []

    if len(markdown) < max_chunk_size:
        return [{"text": markdown, "metadata": {"heading": ""}}]

    sections = [MarkdownChunk(string="", level=0)]

    markdown, additional_metadata = preprocess_markdown(
        markdown, additional_splitter_settings
    )

    # Split by code and non-code
    chunks = markdown.split("```")

    for i, chunk in enumerate(chunks):
        if i % 2 == 0:  # Every even element (0 indexed) is a non-code
            logical_blocks = get_logical_blocks_recursively(
                chunk, max_chunk_size=max_chunk_size, all_sections=[]
            )
            sections += logical_blocks
        else:  # Process the code section
            rows = chunk.split("\n")
            code = rows[1:]

            lang = rows[0]  # Get the language name

            # Provide a hint to LLM
            all_code_rows = (
                    [
                        f"\nFollowing is a code section in {lang}, delimited by triple backticks:",
                        f"```{lang}",
                    ]
                    + code
                    + ["```"]
            )
            all_code_str = "\n".join(all_code_rows)

            # Merge code to a previous logical block if there is enough space
            if len(sections[-1].string) + len(all_code_str) < max_chunk_size:
                sections[-1] = MarkdownChunk(
                    string=sections[-1].string + all_code_str, level=sections[-1].level
                )

            # If code block is larger than max size, physically split it
            elif len(all_code_str) >= max_chunk_size:
                code_chunks = physical_split(
                    all_code_str, max_chunk_size=max_chunk_size
                )
                for cchunk in code_chunks:
                    # Assign language header to the code chunk, if doesn't exist
                    if f"```{lang}" not in cchunk:
                        cchunk_rows = cchunk.split("```")
                        cchunk = f"```{lang}\n" + cchunk_rows[1] + "```"

                    sections.append(
                        MarkdownChunk(string=cchunk, level=CODE_BLOCK_LEVEL)
                    )

            # Otherwise, add as a single chunk
            else:
                sections.append(
                    MarkdownChunk(string=all_code_str, level=CODE_BLOCK_LEVEL)
                )

    all_out = postprocess_sections(
        sections,
        max_chunk_size,
        additional_splitter_settings,
        additional_metadata,
        path,
    )
    return all_out


def preprocess_markdown(markdown: str, additional_settings: dict) -> Tuple[str, dict]:
    preprocess_remove_images = additional_settings.get("remove_images", False)
    preprocess_remove_extra_newlines = additional_settings.get(
        "remove_extra_newlines", True
    )
    preprocess_find_metadata = additional_settings.get("find_metadata", dict())

    if preprocess_remove_images:
        markdown = remove_images(markdown)

    if preprocess_remove_extra_newlines:
        markdown = remove_extra_newlines(markdown)

    additional_metadata = {}

    if preprocess_find_metadata:
        if not isinstance(preprocess_find_metadata, dict):
            raise TypeError(
                f"find_metadata settings should be of type dict. Got {type(preprocess_find_metadata)}"
            )

        for label, search_string in preprocess_find_metadata.items():
            logger.info(f"Looking for metadata: {search_string}")
            metadata = find_metadata(markdown, search_string)
            if metadata:
                logger.info(f"\tFound metadata for {label} - {metadata}")
                additional_metadata[label] = metadata

    return markdown, additional_metadata


def postprocess_sections(
        sections: List[MarkdownChunk],
        max_chunk_size: int,
        additional_settings: dict,
        additional_metadata: dict,
        path: Union[str, Path],
) -> List[dict]:
    all_out = []

    skip_first = additional_settings.get("skip_first", False)
    merge_headers = additional_settings.get("merge_sections", False)

    # Remove all empty sections
    sections = [s for s in sections if s.string]

    if sections and skip_first:
        # remove first section
        sections = sections[1:]

    if sections and merge_headers:
        # Merge sections
        sections = merge_sections(sections, max_chunk_size=max_chunk_size)

    current_heading = ""

    sections_metadata = {"Document name": Path(path).name}

    for s in sections:
        stripped_string = s.string.strip()
        doc_metadata = {}
        if len(stripped_string) > 0:
            heading = ""
            if stripped_string.startswith("#"):  # heading detected
                heading = stripped_string.split("\n")[0].replace("#", "").strip()
                stripped_heading = heading.replace("#", "").replace(" ", "").strip()
                if not stripped_heading:
                    heading = ""
                if s.level == 0:
                    current_heading = heading
                doc_metadata["heading"] = urllib.parse.quote(
                    heading
                )  # isolate the heading
            else:
                doc_metadata["heading"] = ""

            final_section = add_section_metadata(
                stripped_string,
                section_metadata={
                    **sections_metadata,
                    **{"Subsection of": current_heading},
                    **additional_metadata,
                },
            )
            all_out.append({"text": final_section, "metadata": doc_metadata})
    return all_out


def remove_images(page_md: str) -> str:
    return re.sub(r"""!\[[^\]]*\]\((.*?)\s*("(?:.*[^"])")?\s*\)""", "", page_md)


def remove_extra_newlines(page_md) -> str:
    page_md = re.sub(r"\n{3,}", "\n\n", page_md)
    return page_md


def add_section_metadata(s, section_metadata: dict):
    metadata_s = ""
    for k, v in section_metadata.items():
        if v:
            metadata_s += f"{k}: {v}\n"
    metadata = f"Metadata applicable to the next chunk of text delimited by five stars:\n>> METADATA START\n{metadata_s}>> METADATA END\n\n"

    return metadata + "*****\n" + s + "\n*****"


def find_metadata(page_md: str, search_string: str) -> str:
    pattern = rf"{search_string}(.*)"
    match = re.search(pattern, page_md)
    if match:
        return match.group(1)
    return ""


def merge_sections(
        sections: List[MarkdownChunk], max_chunk_size: int
) -> List[MarkdownChunk]:
    current_section = sections[0]
    all_out = []

    prev_level = 0
    for s in sections[1:]:
        if (
                len(current_section.string + s.string) > max_chunk_size
                or s.level <= prev_level
        ):
            all_out.append(current_section)
            current_section = s
            prev_level = 0
        else:
            current_section = MarkdownChunk(
                string=current_section.string + s.string, level=current_section.level
            )
            prev_level = s.level if s.level != CODE_BLOCK_LEVEL else prev_level

    all_out.append(current_section)

    return all_out