File size: 5,108 Bytes
7bd11ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import string
from typing import List, Optional, Tuple

from langchain.chains import LLMChain
from langchain.chains.base import Chain
from loguru import logger

from app.chroma import ChromaDenseVectorDB
from app.config.models.configs import (
    ResponseModel,
    Config, SemanticSearchConfig,
)
from app.ranking import BCEReranker, rerank
from app.splade import SpladeSparseVectorDB


class LLMBundle:
    def __init__(
            self,
            chain: Chain,
            dense_db: ChromaDenseVectorDB,
            reranker: BCEReranker,
            sparse_db: SpladeSparseVectorDB,
            chunk_sizes: List[int],
            hyde_chain: Optional[LLMChain] = None
    ) -> None:
        self.chain = chain
        self.dense_db = dense_db
        self.reranker = reranker
        self.sparse_db = sparse_db
        self.chunk_sizes = chunk_sizes
        self.hyde_chain = hyde_chain

    def get_relevant_documents(
            self,
            original_query: str,
            query: str,
            config: SemanticSearchConfig,
            label: str,
    ) -> Tuple[List[str], float]:
        most_relevant_docs = []
        docs = []

        current_reranker_score, reranker_score = -1e5, -1e5

        for chunk_size in self.chunk_sizes:
            all_relevant_docs = []
            all_relevant_doc_ids = set()
            logger.debug("Evaluating query: {}", query)
            if config.query_prefix:
                logger.info(f"Adding query prefix for retrieval: {config.query_prefix}")
                query = config.query_prefix + query
            sparse_search_docs_ids, sparse_scores = self.sparse_db.query(
                search=query, n=config.max_k, label=label, chunk_size=chunk_size
            )

            logger.info(f"Stage 1: Got {len(sparse_search_docs_ids)} documents.")

            filter = (
                {"chunk_size": chunk_size}
                if len(self.chunk_sizes) > 1
                else dict()
            )

            if label:
                filter.update({"label": label})

            if (
                    not filter
            ):
                filter = None

            logger.info(f"Dense embeddings filter: {filter}")

            res = self.dense_db.similarity_search_with_relevance_scores(
                query, filter=filter
            )
            dense_search_doc_ids = [r[0].metadata["document_id"] for r in res]

            all_doc_ids = (
                set(sparse_search_docs_ids).union(set(dense_search_doc_ids))
            ).difference(all_relevant_doc_ids)
            if all_doc_ids:
                relevant_docs = self.dense_db.get_documents_by_id(
                    document_ids=list(all_doc_ids)
                )
                all_relevant_docs += relevant_docs

            # Re-rank embeddings
            reranker_score, relevant_docs = rerank(
                rerank_model=self.reranker,
                query=original_query,
                docs=all_relevant_docs,
            )
            if reranker_score > current_reranker_score:
                docs = relevant_docs
                current_reranker_score = reranker_score

        len_ = 0

        for doc in docs:
            doc_length = len(doc.page_content)
            if len_ + doc_length < config.max_char_size:
                most_relevant_docs.append(doc)
                len_ += doc_length

        return most_relevant_docs, current_reranker_score

    def get_and_parse_response(
            self,
            query: str,
            config: Config,
            label: str = "",
    ) -> ResponseModel:
        original_query = query

        # Add HyDE queries
        hyde_response = self.hyde_chain.run(query)

        query += hyde_response

        logger.info(f"query: {query}")

        semantic_search_config = config.semantic_search
        most_relevant_docs, score = self.get_relevant_documents(
            original_query, query, semantic_search_config, label
        )

        res = self.chain(
            {"input_documents": most_relevant_docs, "question": original_query},
        )

        out = ResponseModel(
            response=res["output_text"],
            question=query,
            average_score=score,
            hyde_response="",
        )
        for doc in res["input_documents"]:
            out.semantic_search.append(doc.page_content)

        return out


class PartialFormatter(string.Formatter):
    def __init__(self, missing="~~", bad_fmt="!!"):
        self.missing, self.bad_fmt = missing, bad_fmt

    def get_field(self, field_name, args, kwargs):
        try:
            val = super(PartialFormatter, self).get_field(field_name, args, kwargs)
        except (KeyError, AttributeError):
            val = None, field_name
        return val

    def format_field(self, value, spec):
        if value is None:
            return self.missing
        try:
            return super(PartialFormatter, self).format_field(value, spec)
        except ValueError:
            if self.bad_fmt is not None:
                return self.bad_fmt
            else:
                raise