raghavNCI
commited on
Commit
·
2f3b9d0
1
Parent(s):
8573cc3
changes v11
Browse files- question.py +53 -41
question.py
CHANGED
@@ -7,7 +7,6 @@ from typing import List
|
|
7 |
from redis_client import redis_client as r
|
8 |
from dotenv import load_dotenv
|
9 |
from urllib.parse import quote_plus
|
10 |
-
import re
|
11 |
import json
|
12 |
|
13 |
load_dotenv()
|
@@ -20,24 +19,54 @@ askMe = APIRouter()
|
|
20 |
class QuestionInput(BaseModel):
|
21 |
question: str
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
@askMe.post("/ask")
|
24 |
async def ask_question(input: QuestionInput):
|
25 |
question = input.question
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
query_string = " OR ".join(f'"{kw}"' for kw in keywords[:7])
|
34 |
-
encoded_query = quote_plus(query_string)
|
35 |
|
36 |
-
print("
|
37 |
|
38 |
-
|
|
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
try:
|
43 |
response = requests.get(gnews_url, timeout=10)
|
@@ -45,11 +74,11 @@ async def ask_question(input: QuestionInput):
|
|
45 |
articles = response.json().get("articles", [])
|
46 |
except Exception as e:
|
47 |
return {"error": f"GNews API error: {str(e)}"}
|
48 |
-
|
49 |
-
print("
|
50 |
|
51 |
context = "\n\n".join([
|
52 |
-
article.get("
|
53 |
for article in articles
|
54 |
])[:1500]
|
55 |
|
@@ -60,34 +89,17 @@ async def ask_question(input: QuestionInput):
|
|
60 |
"sources": []
|
61 |
}
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
"Content-Type": "application/json"
|
69 |
-
}
|
70 |
-
|
71 |
-
payload = {
|
72 |
-
"inputs": prompt,
|
73 |
-
"parameters": {
|
74 |
-
"max_new_tokens": 256,
|
75 |
-
"temperature": 0.7
|
76 |
-
}
|
77 |
-
}
|
78 |
|
|
|
|
|
|
|
79 |
|
80 |
-
|
81 |
-
response = requests.post(hf_api_url, headers=headers, data=json.dumps(payload), timeout=30)
|
82 |
-
response.raise_for_status()
|
83 |
-
hf_response = response.json()
|
84 |
-
if isinstance(hf_response, list) and len(hf_response) > 0:
|
85 |
-
answer = hf_response[0].get("generated_text", "").strip()
|
86 |
-
else:
|
87 |
-
answer = "Cannot answer – model did not return a valid response."
|
88 |
-
|
89 |
-
except Exception as e:
|
90 |
-
return {"error": f"Hugging Face API error: {str(e)}"}
|
91 |
|
92 |
return {
|
93 |
"question": question,
|
|
|
7 |
from redis_client import redis_client as r
|
8 |
from dotenv import load_dotenv
|
9 |
from urllib.parse import quote_plus
|
|
|
10 |
import json
|
11 |
|
12 |
load_dotenv()
|
|
|
19 |
class QuestionInput(BaseModel):
|
20 |
question: str
|
21 |
|
22 |
+
HF_API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
|
23 |
+
HEADERS = {
|
24 |
+
"Authorization": f"Bearer {HF_TOKEN}",
|
25 |
+
"Content-Type": "application/json"
|
26 |
+
}
|
27 |
+
|
28 |
+
def mistral_generate(prompt: str, max_new_tokens=128):
|
29 |
+
payload = {
|
30 |
+
"inputs": prompt,
|
31 |
+
"parameters": {
|
32 |
+
"max_new_tokens": max_new_tokens,
|
33 |
+
"temperature": 0.7
|
34 |
+
}
|
35 |
+
}
|
36 |
+
try:
|
37 |
+
response = requests.post(HF_API_URL, headers=HEADERS, data=json.dumps(payload), timeout=30)
|
38 |
+
response.raise_for_status()
|
39 |
+
result = response.json()
|
40 |
+
if isinstance(result, list) and len(result) > 0:
|
41 |
+
return result[0].get("generated_text", "").strip()
|
42 |
+
else:
|
43 |
+
return ""
|
44 |
+
except Exception as e:
|
45 |
+
return ""
|
46 |
+
|
47 |
@askMe.post("/ask")
|
48 |
async def ask_question(input: QuestionInput):
|
49 |
question = input.question
|
50 |
|
51 |
+
# --- 1. Ask Mistral to extract keywords ---
|
52 |
+
keyword_prompt = (
|
53 |
+
f"<s>[INST] Extract the 3–6 most important keywords or phrases from the question below. "
|
54 |
+
f"Return only comma-separated keywords (no explanations).\n\nQuestion: {question} [/INST]"
|
55 |
+
)
|
56 |
+
raw_keywords = mistral_generate(keyword_prompt, max_new_tokens=32)
|
|
|
|
|
57 |
|
58 |
+
print("Raw extracted keywords:", raw_keywords)
|
59 |
|
60 |
+
if not raw_keywords:
|
61 |
+
return {"error": "Keyword extraction failed."}
|
62 |
|
63 |
+
# Clean and parse keywords
|
64 |
+
keywords = [kw.strip().strip('"') for kw in raw_keywords.split(",") if kw.strip()]
|
65 |
+
query_string = " OR ".join(f'"{kw}"' for kw in keywords)
|
66 |
+
encoded_query = quote_plus(query_string)
|
67 |
+
|
68 |
+
gnews_url = f"https://gnews.io/api/v4/search?q={encoded_query}&lang=en&max=3&expand=content&token={GNEWS_API_KEY}"
|
69 |
+
print("GNews URL:", gnews_url)
|
70 |
|
71 |
try:
|
72 |
response = requests.get(gnews_url, timeout=10)
|
|
|
74 |
articles = response.json().get("articles", [])
|
75 |
except Exception as e:
|
76 |
return {"error": f"GNews API error: {str(e)}"}
|
77 |
+
|
78 |
+
print("Fetched articles:", articles)
|
79 |
|
80 |
context = "\n\n".join([
|
81 |
+
article.get("description") or ""
|
82 |
for article in articles
|
83 |
])[:1500]
|
84 |
|
|
|
89 |
"sources": []
|
90 |
}
|
91 |
|
92 |
+
# --- 2. Ask Mistral to answer the question using the context ---
|
93 |
+
answer_prompt = (
|
94 |
+
f"<s>[INST] Use the context below to answer the question. If not enough information is available, say 'Cannot answer'.\n\n"
|
95 |
+
f"Context:\n{context}\n\nQuestion: {question} [/INST]"
|
96 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
+
answer = mistral_generate(answer_prompt, max_new_tokens=256)
|
99 |
+
if not answer:
|
100 |
+
answer = "Cannot answer – model did not return a valid response."
|
101 |
|
102 |
+
print("Answer:", answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
return {
|
105 |
"question": question,
|