File size: 10,328 Bytes
2cefcfb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/* coding=utf-8
 * Copyright (c) 2024, NVIDIA CORPORATION.  All rights reserved.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include <ATen/ATen.h>
#include <cuda.h>
#include <cuda_runtime.h>
#include <cuda_fp16.h>
#include <cuda_profiler_api.h>
#include <ATen/cuda/CUDAContext.h>
#include <torch/extension.h>
#include "type_shim.h"
#include <assert.h>
#include <cfloat>
#include <limits>
#include <stdint.h>
#include <c10/macros/Macros.h>

namespace
{
    // Hard-coded hyperparameters
    // WARP_SIZE and WARP_BATCH must match the return values batches_per_warp and
    constexpr int ELEMENTS_PER_LDG_STG = 1; //(WARP_ITERATIONS < 4) ? 1 : 4;
    constexpr int BUFFER_SIZE = 32;
    constexpr int FILTER_SIZE = 12;
    constexpr int HALF_FILTER_SIZE = 6;
    constexpr int UPSAMPLE_REPLICATION_PAD = 5; // 5 on each side, matching torch impl
    constexpr int DOWNSAMPLE_REPLICATION_PAD_LEFT = 5; // matching torch impl
    constexpr int DOWNSAMPLE_REPLICATION_PAD_RIGHT = 6; // matching torch impl

    template <typename input_t, typename output_t, typename acc_t>
    __global__ void anti_alias_activation_forward(
        output_t *dst,
        const input_t *src,
        const input_t *up_ftr,
        const input_t *down_ftr,
        const input_t *alpha,
        const input_t *beta,
        int batch_size,
        int channels,
        int seq_len)
    {
        // Up and downsample filters
        input_t up_filter[FILTER_SIZE];
        input_t down_filter[FILTER_SIZE];

        // Load data from global memory including extra indices reserved for replication paddings
        input_t elements[2 * FILTER_SIZE + 2 * BUFFER_SIZE + 2 * UPSAMPLE_REPLICATION_PAD] = {0};
        input_t intermediates[2 * FILTER_SIZE + 2 * BUFFER_SIZE + DOWNSAMPLE_REPLICATION_PAD_LEFT + DOWNSAMPLE_REPLICATION_PAD_RIGHT] = {0};

        // Output stores downsampled output before writing to dst
        output_t output[BUFFER_SIZE];

        // blockDim/threadIdx = (128, 1, 1)
        // gridDim/blockIdx = (seq_blocks, channels, batches)
        int block_offset = (blockIdx.x * 128 * BUFFER_SIZE + seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
        int local_offset = threadIdx.x * BUFFER_SIZE;
        int seq_offset = blockIdx.x * 128 * BUFFER_SIZE + local_offset;

        // intermediate have double the seq_len
        int intermediate_local_offset = threadIdx.x * BUFFER_SIZE * 2;
        int intermediate_seq_offset = blockIdx.x * 128 * BUFFER_SIZE * 2 + intermediate_local_offset;

        // Get values needed for replication padding before moving pointer
        const input_t *right_most_pntr = src + (seq_len * (blockIdx.y + gridDim.y * blockIdx.z));
        input_t seq_left_most_value = right_most_pntr[0];
        input_t seq_right_most_value = right_most_pntr[seq_len - 1];

        // Move src and dst pointers
        src += block_offset + local_offset;
        dst += block_offset + local_offset;

        // Alpha and beta values for snake activatons. Applies exp by default
        alpha = alpha + blockIdx.y;
        input_t alpha_val = expf(alpha[0]);
        beta = beta + blockIdx.y;
        input_t beta_val = expf(beta[0]);

        #pragma unroll
        for (int it = 0; it < FILTER_SIZE; it += 1)
        {
            up_filter[it] = up_ftr[it];
            down_filter[it] = down_ftr[it];
        }

        // Apply replication padding for upsampling, matching torch impl
        #pragma unroll
        for (int it = -HALF_FILTER_SIZE; it < BUFFER_SIZE + HALF_FILTER_SIZE; it += 1)
        {
            int element_index = seq_offset + it; // index for element
            if ((element_index < 0) && (element_index >= -UPSAMPLE_REPLICATION_PAD))
            {
                elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_left_most_value;
            }
            if ((element_index >= seq_len) && (element_index < seq_len + UPSAMPLE_REPLICATION_PAD))
            {
                elements[2 * (HALF_FILTER_SIZE + it)] = 2 * seq_right_most_value;
            }
            if ((element_index >= 0) && (element_index < seq_len))
            {
                elements[2 * (HALF_FILTER_SIZE + it)] = 2 * src[it];
            }
        }

        // Apply upsampling strided convolution and write to intermediates. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT for replication padding of the downsampilng conv later
        #pragma unroll
        for (int it = 0; it < (2 * BUFFER_SIZE + 2 * FILTER_SIZE); it += 1)
        {
            input_t acc = 0.0;
            int element_index = intermediate_seq_offset + it; // index for intermediate
            #pragma unroll
            for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
            {
                if ((element_index + f_idx) >= 0)
                {
                    acc += up_filter[f_idx] * elements[it + f_idx];
                }
            }
            intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] = acc;
        }

        // Apply activation function. It reserves DOWNSAMPLE_REPLICATION_PAD_LEFT and DOWNSAMPLE_REPLICATION_PAD_RIGHT for replication padding of the downsampilng conv later
        double no_div_by_zero = 0.000000001;
        #pragma unroll
        for (int it = 0; it < 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it += 1)
        {
            intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] += (1.0 / (beta_val + no_div_by_zero)) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val) * sinf(intermediates[it + DOWNSAMPLE_REPLICATION_PAD_LEFT] * alpha_val);
        }

        // Apply replication padding before downsampling conv from intermediates
        #pragma unroll
        for (int it = 0; it < DOWNSAMPLE_REPLICATION_PAD_LEFT; it += 1)
        {
            intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT];
        }
        #pragma unroll
        for (int it = DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE; it < DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE + DOWNSAMPLE_REPLICATION_PAD_RIGHT; it += 1)
        {
            intermediates[it] = intermediates[DOWNSAMPLE_REPLICATION_PAD_LEFT + 2 * BUFFER_SIZE + 2 * FILTER_SIZE - 1];
        }

        // Apply downsample strided convolution (assuming stride=2) from intermediates
        #pragma unroll
        for (int it = 0; it < BUFFER_SIZE; it += 1)
        {
            input_t acc = 0.0;
            #pragma unroll
            for (int f_idx = 0; f_idx < FILTER_SIZE; f_idx += 1)
            {
                // Add constant DOWNSAMPLE_REPLICATION_PAD_RIGHT to match torch implementation
                acc += down_filter[f_idx] * intermediates[it * 2 + f_idx + DOWNSAMPLE_REPLICATION_PAD_RIGHT];
            }
            output[it] = acc;
        }

        // Write output to dst
        #pragma unroll
        for (int it = 0;  it < BUFFER_SIZE;  it += ELEMENTS_PER_LDG_STG)
        {
            int element_index = seq_offset + it;
            if (element_index < seq_len)
            {
                dst[it] = output[it];
            }
        }

    }

    template <typename input_t, typename output_t, typename acc_t>
    void dispatch_anti_alias_activation_forward(
        output_t *dst,
        const input_t *src,
        const input_t *up_ftr,
        const input_t *down_ftr,
        const input_t *alpha,
        const input_t *beta,
        int batch_size,
        int channels,
        int seq_len)
    {
        if (seq_len == 0)
        {
            return;
        }
        else
        {
            // Use 128 threads per block to maximimize gpu utilization
            constexpr int threads_per_block = 128;
            constexpr int seq_len_per_block = 4096;
            int blocks_per_seq_len = (seq_len + seq_len_per_block - 1) / seq_len_per_block;
            dim3 blocks(blocks_per_seq_len, channels, batch_size);
            dim3 threads(threads_per_block, 1, 1);

            anti_alias_activation_forward<input_t, output_t, acc_t>
                <<<blocks, threads, 0, at::cuda::getCurrentCUDAStream()>>>(dst, src, up_ftr, down_ftr, alpha, beta, batch_size, channels, seq_len);
        }
    }
}

extern "C" torch::Tensor fwd_cuda(torch::Tensor const &input, torch::Tensor const &up_filter, torch::Tensor const &down_filter, torch::Tensor const &alpha, torch::Tensor const &beta)
{
    // Input is a 3d tensor with dimensions [batches, channels, seq_len]
    const int batches = input.size(0);
    const int channels = input.size(1);
    const int seq_len = input.size(2);

    // Output
    auto act_options = input.options().requires_grad(false);

    torch::Tensor anti_alias_activation_results =
        torch::empty({batches, channels, seq_len}, act_options);

    void *input_ptr = static_cast<void *>(input.data_ptr());
    void *up_filter_ptr = static_cast<void *>(up_filter.data_ptr());
    void *down_filter_ptr = static_cast<void *>(down_filter.data_ptr());
    void *alpha_ptr = static_cast<void *>(alpha.data_ptr());
    void *beta_ptr = static_cast<void *>(beta.data_ptr());
    void *anti_alias_activation_results_ptr = static_cast<void *>(anti_alias_activation_results.data_ptr());

    DISPATCH_FLOAT_HALF_AND_BFLOAT(
        input.scalar_type(),
        "dispatch anti alias activation_forward",
        dispatch_anti_alias_activation_forward<scalar_t, scalar_t, float>(
            reinterpret_cast<scalar_t *>(anti_alias_activation_results_ptr),
            reinterpret_cast<const scalar_t *>(input_ptr),
            reinterpret_cast<const scalar_t *>(up_filter_ptr),
            reinterpret_cast<const scalar_t *>(down_filter_ptr),
            reinterpret_cast<const scalar_t *>(alpha_ptr),
            reinterpret_cast<const scalar_t *>(beta_ptr),
            batches,
            channels,
            seq_len););
    return anti_alias_activation_results;
}