Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
initial commit
Browse files- .streamlit/config.toml +0 -0
- Dockerfile +24 -0
- README.md +3 -3
- requirements.txt +23 -3
- src/kinetics700_val.parquet +3 -0
- src/opendrive_val.parquet +3 -0
- src/streamlit_app.py +227 -38
.streamlit/config.toml
ADDED
File without changes
|
Dockerfile
CHANGED
@@ -1,3 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
FROM python:3.9-slim
|
2 |
|
3 |
WORKDIR /app
|
@@ -9,6 +24,15 @@ RUN apt-get update && apt-get install -y \
|
|
9 |
git \
|
10 |
&& rm -rf /var/lib/apt/lists/*
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
COPY requirements.txt ./
|
13 |
COPY src/ ./src/
|
14 |
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
FROM python:3.9-slim
|
17 |
|
18 |
WORKDIR /app
|
|
|
24 |
git \
|
25 |
&& rm -rf /var/lib/apt/lists/*
|
26 |
|
27 |
+
RUN mkdir -p /tmp/huggingface \
|
28 |
+
&& chown -R 1000:1000 /tmp/huggingface
|
29 |
+
|
30 |
+
ENV HF_HOME=/tmp/huggingface \
|
31 |
+
HF_HUB_CACHE=/tmp/huggingface \
|
32 |
+
TRANSFORMERS_CACHE=/tmp/huggingface \
|
33 |
+
XDG_CACHE_HOME=/tmp \
|
34 |
+
TMPDIR=/tmp
|
35 |
+
|
36 |
COPY requirements.txt ./
|
37 |
COPY src/ ./src/
|
38 |
|
README.md
CHANGED
@@ -1,14 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: red
|
6 |
sdk: docker
|
7 |
app_port: 8501
|
8 |
tags:
|
9 |
-
|
10 |
pinned: false
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
# Welcome to Streamlit!
|
|
|
1 |
---
|
2 |
+
title: Cosmos Embed1
|
3 |
emoji: π
|
4 |
colorFrom: red
|
5 |
colorTo: red
|
6 |
sdk: docker
|
7 |
app_port: 8501
|
8 |
tags:
|
9 |
+
- streamlit
|
10 |
pinned: false
|
11 |
+
short_description: Cosmos-Embed1 demo app
|
12 |
---
|
13 |
|
14 |
# Welcome to Streamlit!
|
requirements.txt
CHANGED
@@ -1,3 +1,23 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
altair==5.5.0
|
17 |
+
streamlit==1.45.0
|
18 |
+
pandas==2.2.3
|
19 |
+
plotly==6.0.1
|
20 |
+
faiss-cpu==1.11.0
|
21 |
+
transformers==4.44.2
|
22 |
+
einops==0.8.1
|
23 |
+
torchvision==0.21.0
|
src/kinetics700_val.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c7495ac043e0565b636b2ac964bf630fa0b0ed6c7569cbd6c92f156ea5899bb
|
3 |
+
size 15595889
|
src/opendrive_val.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9d0610bbbba386744efed46272c39d140ba902e1ff47acddb7ec54c44ff7d444
|
3 |
+
size 10482753
|
src/streamlit_app.py
CHANGED
@@ -1,40 +1,229 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
18 |
-
|
19 |
-
indices = np.linspace(0, 1, num_points)
|
20 |
-
theta = 2 * np.pi * num_turns * indices
|
21 |
-
radius = indices
|
22 |
-
|
23 |
-
x = radius * np.cos(theta)
|
24 |
-
y = radius * np.sin(theta)
|
25 |
-
|
26 |
-
df = pd.DataFrame({
|
27 |
-
"x": x,
|
28 |
-
"y": y,
|
29 |
-
"idx": indices,
|
30 |
-
"rand": np.random.randn(num_points),
|
31 |
-
})
|
32 |
-
|
33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
34 |
-
.mark_point(filled=True)
|
35 |
-
.encode(
|
36 |
-
x=alt.X("x", axis=None),
|
37 |
-
y=alt.Y("y", axis=None),
|
38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
40 |
-
))
|
|
|
1 |
+
# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2 |
+
# SPDX-License-Identifier: Apache-2.0
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
import streamlit as st
|
17 |
+
from typing import Union, Optional
|
18 |
+
import pandas as pd
|
19 |
+
import plotly.express as px
|
20 |
+
import faiss
|
21 |
+
import numpy as np
|
22 |
+
from transformers import AutoModel, AutoProcessor
|
23 |
+
import torch
|
24 |
+
from datetime import datetime
|
25 |
+
|
26 |
+
|
27 |
+
class SelectedIndex:
|
28 |
+
def __init__(self, idx) -> None:
|
29 |
+
self.idx = int(idx)
|
30 |
+
self.timestamp = datetime.now()
|
31 |
+
|
32 |
+
def __eq__(self, value: Union["SelectedIndex", int]) -> bool:
|
33 |
+
if isinstance(value, SelectedIndex):
|
34 |
+
return self.idx == value.idx
|
35 |
+
return self.idx == int(value)
|
36 |
+
|
37 |
+
def __ne__(self, value: Union["SelectedIndex", int]) -> bool:
|
38 |
+
return not self.__eq__(value)
|
39 |
+
|
40 |
+
def is_valid(self) -> bool:
|
41 |
+
return self.idx >= 0
|
42 |
+
|
43 |
+
|
44 |
+
@st.cache_data
|
45 |
+
def load_data(path: str):
|
46 |
+
df = pd.read_parquet(path)
|
47 |
+
embs = np.stack(df["embedding"].tolist()).astype("float32")
|
48 |
+
faiss.normalize_L2(embs)
|
49 |
+
D = embs.shape[1]
|
50 |
+
index = faiss.IndexFlatIP(D)
|
51 |
+
index.add(embs)
|
52 |
+
return df, index, embs
|
53 |
+
|
54 |
+
|
55 |
+
def load_model() -> tuple[AutoModel, AutoProcessor]:
|
56 |
+
if "preprocessor" not in st.session_state:
|
57 |
+
st.session_state.preprocessor = AutoProcessor.from_pretrained(
|
58 |
+
"nvidia/Cosmos-Embed1-224p", trust_remote_code=True, token=True,
|
59 |
+
)
|
60 |
+
if "model" not in st.session_state:
|
61 |
+
model = AutoModel.from_pretrained(
|
62 |
+
"nvidia/Cosmos-Embed1-224p", trust_remote_code=True, token=True,
|
63 |
+
)
|
64 |
+
model.eval()
|
65 |
+
st.session_state.model = model
|
66 |
+
return st.session_state.model, st.session_state.preprocessor
|
67 |
+
|
68 |
+
|
69 |
+
def preview_video(df, idx, slot, height=420, margin_top=30, autoplay=True, title=None) -> None:
|
70 |
+
if title:
|
71 |
+
slot.markdown(f"### {title}")
|
72 |
+
start = int(df.loc[idx, "span_start"])
|
73 |
+
end = int(df.loc[idx, "span_end"])
|
74 |
+
youtube_id = df.loc[idx, "youtube_id"]
|
75 |
+
url = f"https://www.youtube.com/embed/{youtube_id}?start={start}&end={end}"
|
76 |
+
sep = "?" if "?" not in url else "&"
|
77 |
+
params = f"{sep}mute=1&rel=0"
|
78 |
+
if autoplay:
|
79 |
+
params += "&autoplay=1"
|
80 |
+
slot.markdown(
|
81 |
+
f'''
|
82 |
+
<div style="margin-top:{margin_top}px">
|
83 |
+
<iframe width="100%" height="{height}"
|
84 |
+
src="{url}{params}"
|
85 |
+
frameborder="0"
|
86 |
+
allow="accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture"
|
87 |
+
allow="autoplay; fullscreen" allowfullscreen>
|
88 |
+
</iframe>
|
89 |
+
</div>
|
90 |
+
''',
|
91 |
+
unsafe_allow_html=True
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
def get_nearest_ids(vec, k=5, ignore_self=True) -> list:
|
96 |
+
q = vec.reshape(1, -1).astype("float32")
|
97 |
+
faiss.normalize_L2(q)
|
98 |
+
topk = k + 1 if ignore_self else k
|
99 |
+
_, I = index.search(q, topk)
|
100 |
+
ids = I[0]
|
101 |
+
return ids[1:].tolist() if ignore_self else ids.tolist()
|
102 |
+
|
103 |
+
|
104 |
+
def get_most_recent_selection() -> tuple[Optional[int], str]:
|
105 |
+
if st.session_state.text_selection.is_valid() and st.session_state.click_selection.is_valid():
|
106 |
+
if st.session_state.text_selection.timestamp > st.session_state.click_selection.timestamp:
|
107 |
+
return st.session_state.text_selection.idx, "text"
|
108 |
+
return st.session_state.click_selection.idx, "click"
|
109 |
+
if st.session_state.text_selection.is_valid():
|
110 |
+
return st.session_state.text_selection.idx, "text"
|
111 |
+
if st.session_state.click_selection.is_valid():
|
112 |
+
return st.session_state.click_selection.idx, "click"
|
113 |
+
return None, ""
|
114 |
+
|
115 |
+
|
116 |
+
def reset_state() -> None:
|
117 |
+
if "text_selection" not in st.session_state:
|
118 |
+
st.session_state.text_selection = SelectedIndex(-1)
|
119 |
+
if "click_selection" not in st.session_state:
|
120 |
+
st.session_state.click_selection = SelectedIndex(-1)
|
121 |
+
if "text_query" not in st.session_state:
|
122 |
+
st.session_state.text_query = ""
|
123 |
+
|
124 |
+
# βββ App setup ββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
125 |
+
|
126 |
+
st.set_page_config(layout="wide")
|
127 |
+
reset_state()
|
128 |
+
model, preprocessor = load_model()
|
129 |
+
file_map = {"kinetics700 (val)": "src/kinetics700_val.parquet", "opendv (val)": "src/opendrive_val.parquet"}
|
130 |
+
st.title("π Search with Cosmos-Embed1")
|
131 |
+
|
132 |
+
col1, col2 = st.columns([2,2])
|
133 |
+
with col1:
|
134 |
+
dataset = st.selectbox("Select dataset", list(file_map.keys()), on_change=reset_state)
|
135 |
+
df, index, embs = load_data(file_map[dataset])
|
136 |
+
|
137 |
+
# initialize session state
|
138 |
+
if "text_selection" not in st.session_state:
|
139 |
+
st.session_state.text_selection = SelectedIndex(-1)
|
140 |
+
if "click_selection" not in st.session_state:
|
141 |
+
st.session_state.click_selection = SelectedIndex(-1)
|
142 |
+
if "text_query" not in st.session_state:
|
143 |
+
st.session_state.text_query = ""
|
144 |
+
|
145 |
+
# βββ Layout ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
146 |
+
|
147 |
+
# LEFT: scatter
|
148 |
+
with col1:
|
149 |
+
fig = px.scatter(
|
150 |
+
df, x="x", y="y",
|
151 |
+
hover_name="tar_key", hover_data=["cluster_id"],
|
152 |
+
color="cluster_id", color_continuous_scale="Turbo",
|
153 |
+
title="t-SNE projection (click to select)"
|
154 |
+
)
|
155 |
+
fig.update_layout(
|
156 |
+
dragmode="zoom",
|
157 |
+
margin=dict(l=5, r=5, t=40, b=5),
|
158 |
+
xaxis_title=None, yaxis_title=None,
|
159 |
+
coloraxis_colorbar=dict(title="")
|
160 |
+
)
|
161 |
+
fig.update_xaxes(showticklabels=False, showgrid=False, zeroline=False,
|
162 |
+
showline=True, linecolor="black", mirror=True)
|
163 |
+
fig.update_yaxes(showticklabels=False, showgrid=False, zeroline=False,
|
164 |
+
showline=True, linecolor="black", mirror=True)
|
165 |
+
fig.update_layout(annotations=[dict(
|
166 |
+
text="k-means cluster", xref="paper", yref="paper",
|
167 |
+
x=1.02, y=0.5, textangle=90, showarrow=False
|
168 |
+
)])
|
169 |
+
|
170 |
+
most_recent_idx, most_recent_method = get_most_recent_selection()
|
171 |
+
if most_recent_idx is not None and most_recent_method == "text":
|
172 |
+
x0, y0 = df.iloc[most_recent_idx][["x", "y"]]
|
173 |
+
span = 6.0
|
174 |
+
fig.update_layout(
|
175 |
+
xaxis_range=[x0 - span, x0 + span],
|
176 |
+
yaxis_range=[y0 - span, y0 + span],
|
177 |
+
transition={"duration": 1},
|
178 |
+
)
|
179 |
+
|
180 |
+
click_event = st.plotly_chart(
|
181 |
+
fig, use_container_width=True,
|
182 |
+
on_select="rerun", selection_mode="points"
|
183 |
+
)
|
184 |
+
|
185 |
+
# RIGHT: text input & preview
|
186 |
+
with col2:
|
187 |
+
if click_event and click_event.get("selection", {}).get("point_indices"):
|
188 |
+
curr_click = click_event["selection"]["point_indices"][0]
|
189 |
+
if curr_click != st.session_state.click_selection:
|
190 |
+
# new click so update the previous selection and wipe any text query
|
191 |
+
st.session_state.click_selection = SelectedIndex(curr_click)
|
192 |
+
st.session_state.text_query = ""
|
193 |
+
|
194 |
+
# text input (will pick up cleared or existing text)
|
195 |
+
text_query = st.text_input(
|
196 |
+
"Search via text",
|
197 |
+
key="text_query",
|
198 |
+
help="Type a query and press Enter"
|
199 |
+
)
|
200 |
+
|
201 |
+
# if user typed text (and pressed Enter), override selection
|
202 |
+
if text_query:
|
203 |
+
with torch.no_grad():
|
204 |
+
model_input = preprocessor(text=[text_query])
|
205 |
+
emb_out = model.get_text_embeddings(**model_input).text_proj.cpu().numpy()
|
206 |
+
idx_text, = get_nearest_ids(emb_out, k=1, ignore_self=False)
|
207 |
+
if st.session_state.text_selection != idx_text:
|
208 |
+
# new text so update the previous selection and wipe any text query
|
209 |
+
st.session_state.text_selection = SelectedIndex(idx_text)
|
210 |
+
st.rerun()
|
211 |
+
|
212 |
+
# main preview
|
213 |
+
preview_slot = st.empty()
|
214 |
+
most_recent, most_recent_modality = get_most_recent_selection()
|
215 |
+
if most_recent is not None:
|
216 |
+
preview_video(df, most_recent, preview_slot)
|
217 |
+
else:
|
218 |
+
preview_slot.write("β³ Waiting for selectionβ¦")
|
219 |
|
220 |
+
# BOTTOM: 5 nearest neighbors
|
221 |
+
st.markdown("### π¬ 5 Closest Videos")
|
222 |
+
if most_recent is not None:
|
223 |
+
ignore_self = most_recent_modality == "click"
|
224 |
+
nn_ids = get_nearest_ids(embs[most_recent], k=5, ignore_self=ignore_self)
|
225 |
+
cols = st.columns(5)
|
226 |
+
for c, nid in zip(cols, nn_ids):
|
227 |
+
preview_video(df, nid, c, height=180, margin_top=5, autoplay=False)
|
228 |
+
else:
|
229 |
+
st.write("Use a click or a text query above to list neighbors.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|