File size: 41,369 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint

from ...configuration_utils import ConfigMixin, register_to_config
from ...loaders import FromOriginalModelMixin
from ...utils import logging
from ...utils.accelerate_utils import apply_forward_hook
from ..activations import get_activation
from ..modeling_outputs import AutoencoderKLOutput
from ..modeling_utils import ModelMixin
from .vae import DecoderOutput, DiagonalGaussianDistribution


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

CACHE_T = 2


class WanCausalConv3d(nn.Conv3d):
    r"""
    A custom 3D causal convolution layer with feature caching support.

    This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
    caching for efficient inference.

    Args:
        in_channels (int): Number of channels in the input image
        out_channels (int): Number of channels produced by the convolution
        kernel_size (int or tuple): Size of the convolving kernel
        stride (int or tuple, optional): Stride of the convolution. Default: 1
        padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
    """

    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int, int]],
        stride: Union[int, Tuple[int, int, int]] = 1,
        padding: Union[int, Tuple[int, int, int]] = 0,
    ) -> None:
        super().__init__(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
        )

        # Set up causal padding
        self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
        self.padding = (0, 0, 0)

    def forward(self, x, cache_x=None):
        padding = list(self._padding)
        if cache_x is not None and self._padding[4] > 0:
            cache_x = cache_x.to(x.device)
            x = torch.cat([cache_x, x], dim=2)
            padding[4] -= cache_x.shape[2]
        x = F.pad(x, padding)
        return super().forward(x)


class WanRMS_norm(nn.Module):
    r"""
    A custom RMS normalization layer.

    Args:
        dim (int): The number of dimensions to normalize over.
        channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
            Default is True.
        images (bool, optional): Whether the input represents image data. Default is True.
        bias (bool, optional): Whether to include a learnable bias term. Default is False.
    """

    def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
        super().__init__()
        broadcastable_dims = (1, 1, 1) if not images else (1, 1)
        shape = (dim, *broadcastable_dims) if channel_first else (dim,)

        self.channel_first = channel_first
        self.scale = dim**0.5
        self.gamma = nn.Parameter(torch.ones(shape))
        self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0

    def forward(self, x):
        return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias


class WanUpsample(nn.Upsample):
    r"""
    Perform upsampling while ensuring the output tensor has the same data type as the input.

    Args:
        x (torch.Tensor): Input tensor to be upsampled.

    Returns:
        torch.Tensor: Upsampled tensor with the same data type as the input.
    """

    def forward(self, x):
        return super().forward(x.float()).type_as(x)


class WanResample(nn.Module):
    r"""
    A custom resampling module for 2D and 3D data.

    Args:
        dim (int): The number of input/output channels.
        mode (str): The resampling mode. Must be one of:
            - 'none': No resampling (identity operation).
            - 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
            - 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
            - 'downsample2d': 2D downsampling with zero-padding and convolution.
            - 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
    """

    def __init__(self, dim: int, mode: str) -> None:
        super().__init__()
        self.dim = dim
        self.mode = mode

        # layers
        if mode == "upsample2d":
            self.resample = nn.Sequential(
                WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
            )
        elif mode == "upsample3d":
            self.resample = nn.Sequential(
                WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
            )
            self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))

        elif mode == "downsample2d":
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
        elif mode == "downsample3d":
            self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
            self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))

        else:
            self.resample = nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        b, c, t, h, w = x.size()
        if self.mode == "upsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = "Rep"
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -CACHE_T:, :, :].clone()
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
                        # cache last frame of last two chunk
                        cache_x = torch.cat(
                            [feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
                        )
                    if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
                        cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
                    if feat_cache[idx] == "Rep":
                        x = self.time_conv(x)
                    else:
                        x = self.time_conv(x, feat_cache[idx])
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1

                    x = x.reshape(b, 2, c, t, h, w)
                    x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
                    x = x.reshape(b, c, t * 2, h, w)
        t = x.shape[2]
        x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
        x = self.resample(x)
        x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)

        if self.mode == "downsample3d":
            if feat_cache is not None:
                idx = feat_idx[0]
                if feat_cache[idx] is None:
                    feat_cache[idx] = x.clone()
                    feat_idx[0] += 1
                else:
                    cache_x = x[:, :, -1:, :, :].clone()
                    x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
                    feat_cache[idx] = cache_x
                    feat_idx[0] += 1
        return x


class WanResidualBlock(nn.Module):
    r"""
    A custom residual block module.

    Args:
        in_dim (int): Number of input channels.
        out_dim (int): Number of output channels.
        dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
        non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
    """

    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        dropout: float = 0.0,
        non_linearity: str = "silu",
    ) -> None:
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim
        self.nonlinearity = get_activation(non_linearity)

        # layers
        self.norm1 = WanRMS_norm(in_dim, images=False)
        self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
        self.norm2 = WanRMS_norm(out_dim, images=False)
        self.dropout = nn.Dropout(dropout)
        self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
        self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        # Apply shortcut connection
        h = self.conv_shortcut(x)

        # First normalization and activation
        x = self.norm1(x)
        x = self.nonlinearity(x)

        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

            x = self.conv1(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv1(x)

        # Second normalization and activation
        x = self.norm2(x)
        x = self.nonlinearity(x)

        # Dropout
        x = self.dropout(x)

        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)

            x = self.conv2(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv2(x)

        # Add residual connection
        return x + h


class WanAttentionBlock(nn.Module):
    r"""
    Causal self-attention with a single head.

    Args:
        dim (int): The number of channels in the input tensor.
    """

    def __init__(self, dim):
        super().__init__()
        self.dim = dim

        # layers
        self.norm = WanRMS_norm(dim)
        self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
        self.proj = nn.Conv2d(dim, dim, 1)

    def forward(self, x):
        identity = x
        batch_size, channels, time, height, width = x.size()

        x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
        x = self.norm(x)

        # compute query, key, value
        qkv = self.to_qkv(x)
        qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
        qkv = qkv.permute(0, 1, 3, 2).contiguous()
        q, k, v = qkv.chunk(3, dim=-1)

        # apply attention
        x = F.scaled_dot_product_attention(q, k, v)

        x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)

        # output projection
        x = self.proj(x)

        # Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
        x = x.view(batch_size, time, channels, height, width)
        x = x.permute(0, 2, 1, 3, 4)

        return x + identity


class WanMidBlock(nn.Module):
    """
    Middle block for WanVAE encoder and decoder.

    Args:
        dim (int): Number of input/output channels.
        dropout (float): Dropout rate.
        non_linearity (str): Type of non-linearity to use.
    """

    def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
        super().__init__()
        self.dim = dim

        # Create the components
        resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
        attentions = []
        for _ in range(num_layers):
            attentions.append(WanAttentionBlock(dim))
            resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        self.gradient_checkpointing = False

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        # First residual block
        x = self.resnets[0](x, feat_cache, feat_idx)

        # Process through attention and residual blocks
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
            if attn is not None:
                x = attn(x)

            x = resnet(x, feat_cache, feat_idx)

        return x


class WanEncoder3d(nn.Module):
    r"""
    A 3D encoder module.

    Args:
        dim (int): The base number of channels in the first layer.
        z_dim (int): The dimensionality of the latent space.
        dim_mult (list of int): Multipliers for the number of channels in each block.
        num_res_blocks (int): Number of residual blocks in each block.
        attn_scales (list of float): Scales at which to apply attention mechanisms.
        temperal_downsample (list of bool): Whether to downsample temporally in each block.
        dropout (float): Dropout rate for the dropout layers.
        non_linearity (str): Type of non-linearity to use.
    """

    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_downsample=[True, True, False],
        dropout=0.0,
        non_linearity: str = "silu",
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_downsample = temperal_downsample
        self.nonlinearity = get_activation(non_linearity)

        # dimensions
        dims = [dim * u for u in [1] + dim_mult]
        scale = 1.0

        # init block
        self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1)

        # downsample blocks
        self.down_blocks = nn.ModuleList([])
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            for _ in range(num_res_blocks):
                self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
                if scale in attn_scales:
                    self.down_blocks.append(WanAttentionBlock(out_dim))
                in_dim = out_dim

            # downsample block
            if i != len(dim_mult) - 1:
                mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
                self.down_blocks.append(WanResample(out_dim, mode=mode))
                scale /= 2.0

        # middle blocks
        self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)

        # output blocks
        self.norm_out = WanRMS_norm(out_dim, images=False)
        self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)

        self.gradient_checkpointing = False

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
            x = self.conv_in(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv_in(x)

        ## downsamples
        for layer in self.down_blocks:
            if feat_cache is not None:
                x = layer(x, feat_cache, feat_idx)
            else:
                x = layer(x)

        ## middle
        x = self.mid_block(x, feat_cache, feat_idx)

        ## head
        x = self.norm_out(x)
        x = self.nonlinearity(x)
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
            x = self.conv_out(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv_out(x)
        return x


class WanUpBlock(nn.Module):
    """
    A block that handles upsampling for the WanVAE decoder.

    Args:
        in_dim (int): Input dimension
        out_dim (int): Output dimension
        num_res_blocks (int): Number of residual blocks
        dropout (float): Dropout rate
        upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
        non_linearity (str): Type of non-linearity to use
    """

    def __init__(
        self,
        in_dim: int,
        out_dim: int,
        num_res_blocks: int,
        dropout: float = 0.0,
        upsample_mode: Optional[str] = None,
        non_linearity: str = "silu",
    ):
        super().__init__()
        self.in_dim = in_dim
        self.out_dim = out_dim

        # Create layers list
        resnets = []
        # Add residual blocks and attention if needed
        current_dim = in_dim
        for _ in range(num_res_blocks + 1):
            resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
            current_dim = out_dim

        self.resnets = nn.ModuleList(resnets)

        # Add upsampling layer if needed
        self.upsamplers = None
        if upsample_mode is not None:
            self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])

        self.gradient_checkpointing = False

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        """
        Forward pass through the upsampling block.

        Args:
            x (torch.Tensor): Input tensor
            feat_cache (list, optional): Feature cache for causal convolutions
            feat_idx (list, optional): Feature index for cache management

        Returns:
            torch.Tensor: Output tensor
        """
        for resnet in self.resnets:
            if feat_cache is not None:
                x = resnet(x, feat_cache, feat_idx)
            else:
                x = resnet(x)

        if self.upsamplers is not None:
            if feat_cache is not None:
                x = self.upsamplers[0](x, feat_cache, feat_idx)
            else:
                x = self.upsamplers[0](x)
        return x


class WanDecoder3d(nn.Module):
    r"""
    A 3D decoder module.

    Args:
        dim (int): The base number of channels in the first layer.
        z_dim (int): The dimensionality of the latent space.
        dim_mult (list of int): Multipliers for the number of channels in each block.
        num_res_blocks (int): Number of residual blocks in each block.
        attn_scales (list of float): Scales at which to apply attention mechanisms.
        temperal_upsample (list of bool): Whether to upsample temporally in each block.
        dropout (float): Dropout rate for the dropout layers.
        non_linearity (str): Type of non-linearity to use.
    """

    def __init__(
        self,
        dim=128,
        z_dim=4,
        dim_mult=[1, 2, 4, 4],
        num_res_blocks=2,
        attn_scales=[],
        temperal_upsample=[False, True, True],
        dropout=0.0,
        non_linearity: str = "silu",
    ):
        super().__init__()
        self.dim = dim
        self.z_dim = z_dim
        self.dim_mult = dim_mult
        self.num_res_blocks = num_res_blocks
        self.attn_scales = attn_scales
        self.temperal_upsample = temperal_upsample

        self.nonlinearity = get_activation(non_linearity)

        # dimensions
        dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
        scale = 1.0 / 2 ** (len(dim_mult) - 2)

        # init block
        self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)

        # middle blocks
        self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)

        # upsample blocks
        self.up_blocks = nn.ModuleList([])
        for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
            # residual (+attention) blocks
            if i > 0:
                in_dim = in_dim // 2

            # Determine if we need upsampling
            upsample_mode = None
            if i != len(dim_mult) - 1:
                upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"

            # Create and add the upsampling block
            up_block = WanUpBlock(
                in_dim=in_dim,
                out_dim=out_dim,
                num_res_blocks=num_res_blocks,
                dropout=dropout,
                upsample_mode=upsample_mode,
                non_linearity=non_linearity,
            )
            self.up_blocks.append(up_block)

            # Update scale for next iteration
            if upsample_mode is not None:
                scale *= 2.0

        # output blocks
        self.norm_out = WanRMS_norm(out_dim, images=False)
        self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1)

        self.gradient_checkpointing = False

    def forward(self, x, feat_cache=None, feat_idx=[0]):
        ## conv1
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
            x = self.conv_in(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv_in(x)

        ## middle
        x = self.mid_block(x, feat_cache, feat_idx)

        ## upsamples
        for up_block in self.up_blocks:
            x = up_block(x, feat_cache, feat_idx)

        ## head
        x = self.norm_out(x)
        x = self.nonlinearity(x)
        if feat_cache is not None:
            idx = feat_idx[0]
            cache_x = x[:, :, -CACHE_T:, :, :].clone()
            if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
                # cache last frame of last two chunk
                cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
            x = self.conv_out(x, feat_cache[idx])
            feat_cache[idx] = cache_x
            feat_idx[0] += 1
        else:
            x = self.conv_out(x)
        return x


class AutoencoderKLWan(ModelMixin, ConfigMixin, FromOriginalModelMixin):
    r"""
    A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
    Introduced in [Wan 2.1].

    This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
    for all models (such as downloading or saving).
    """

    _supports_gradient_checkpointing = False

    @register_to_config
    def __init__(
        self,
        base_dim: int = 96,
        z_dim: int = 16,
        dim_mult: Tuple[int] = [1, 2, 4, 4],
        num_res_blocks: int = 2,
        attn_scales: List[float] = [],
        temperal_downsample: List[bool] = [False, True, True],
        dropout: float = 0.0,
        latents_mean: List[float] = [
            -0.7571,
            -0.7089,
            -0.9113,
            0.1075,
            -0.1745,
            0.9653,
            -0.1517,
            1.5508,
            0.4134,
            -0.0715,
            0.5517,
            -0.3632,
            -0.1922,
            -0.9497,
            0.2503,
            -0.2921,
        ],
        latents_std: List[float] = [
            2.8184,
            1.4541,
            2.3275,
            2.6558,
            1.2196,
            1.7708,
            2.6052,
            2.0743,
            3.2687,
            2.1526,
            2.8652,
            1.5579,
            1.6382,
            1.1253,
            2.8251,
            1.9160,
        ],
    ) -> None:
        super().__init__()

        self.z_dim = z_dim
        self.temperal_downsample = temperal_downsample
        self.temperal_upsample = temperal_downsample[::-1]

        self.encoder = WanEncoder3d(
            base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
        )
        self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
        self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)

        self.decoder = WanDecoder3d(
            base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
        )

        self.spatial_compression_ratio = 2 ** len(self.temperal_downsample)

        # When decoding a batch of video latents at a time, one can save memory by slicing across the batch dimension
        # to perform decoding of a single video latent at a time.
        self.use_slicing = False

        # When decoding spatially large video latents, the memory requirement is very high. By breaking the video latent
        # frames spatially into smaller tiles and performing multiple forward passes for decoding, and then blending the
        # intermediate tiles together, the memory requirement can be lowered.
        self.use_tiling = False

        # The minimal tile height and width for spatial tiling to be used
        self.tile_sample_min_height = 256
        self.tile_sample_min_width = 256

        # The minimal distance between two spatial tiles
        self.tile_sample_stride_height = 192
        self.tile_sample_stride_width = 192

    def enable_tiling(
        self,
        tile_sample_min_height: Optional[int] = None,
        tile_sample_min_width: Optional[int] = None,
        tile_sample_stride_height: Optional[float] = None,
        tile_sample_stride_width: Optional[float] = None,
    ) -> None:
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.

        Args:
            tile_sample_min_height (`int`, *optional*):
                The minimum height required for a sample to be separated into tiles across the height dimension.
            tile_sample_min_width (`int`, *optional*):
                The minimum width required for a sample to be separated into tiles across the width dimension.
            tile_sample_stride_height (`int`, *optional*):
                The minimum amount of overlap between two consecutive vertical tiles. This is to ensure that there are
                no tiling artifacts produced across the height dimension.
            tile_sample_stride_width (`int`, *optional*):
                The stride between two consecutive horizontal tiles. This is to ensure that there are no tiling
                artifacts produced across the width dimension.
        """
        self.use_tiling = True
        self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
        self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
        self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
        self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width

    def disable_tiling(self) -> None:
        r"""
        Disable tiled VAE decoding. If `enable_tiling` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_tiling = False

    def enable_slicing(self) -> None:
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.use_slicing = True

    def disable_slicing(self) -> None:
        r"""
        Disable sliced VAE decoding. If `enable_slicing` was previously enabled, this method will go back to computing
        decoding in one step.
        """
        self.use_slicing = False

    def clear_cache(self):
        def _count_conv3d(model):
            count = 0
            for m in model.modules():
                if isinstance(m, WanCausalConv3d):
                    count += 1
            return count

        self._conv_num = _count_conv3d(self.decoder)
        self._conv_idx = [0]
        self._feat_map = [None] * self._conv_num
        # cache encode
        self._enc_conv_num = _count_conv3d(self.encoder)
        self._enc_conv_idx = [0]
        self._enc_feat_map = [None] * self._enc_conv_num

    def _encode(self, x: torch.Tensor):
        _, _, num_frame, height, width = x.shape

        if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
            return self.tiled_encode(x)

        self.clear_cache()
        iter_ = 1 + (num_frame - 1) // 4
        for i in range(iter_):
            self._enc_conv_idx = [0]
            if i == 0:
                out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
            else:
                out_ = self.encoder(
                    x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
                    feat_cache=self._enc_feat_map,
                    feat_idx=self._enc_conv_idx,
                )
                out = torch.cat([out, out_], 2)

        enc = self.quant_conv(out)
        self.clear_cache()
        return enc

    @apply_forward_hook
    def encode(
        self, x: torch.Tensor, return_dict: bool = True
    ) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
        r"""
        Encode a batch of images into latents.

        Args:
            x (`torch.Tensor`): Input batch of images.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.

        Returns:
                The latent representations of the encoded videos. If `return_dict` is True, a
                [`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
        """
        if self.use_slicing and x.shape[0] > 1:
            encoded_slices = [self._encode(x_slice) for x_slice in x.split(1)]
            h = torch.cat(encoded_slices)
        else:
            h = self._encode(x)
        posterior = DiagonalGaussianDistribution(h)

        if not return_dict:
            return (posterior,)
        return AutoencoderKLOutput(latent_dist=posterior)

    def _decode(self, z: torch.Tensor, return_dict: bool = True):
        _, _, num_frame, height, width = z.shape
        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio

        if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
            return self.tiled_decode(z, return_dict=return_dict)

        self.clear_cache()
        x = self.post_quant_conv(z)
        for i in range(num_frame):
            self._conv_idx = [0]
            if i == 0:
                out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
            else:
                out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
                out = torch.cat([out, out_], 2)

        out = torch.clamp(out, min=-1.0, max=1.0)
        self.clear_cache()
        if not return_dict:
            return (out,)

        return DecoderOutput(sample=out)

    @apply_forward_hook
    def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
        r"""
        Decode a batch of images.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        if self.use_slicing and z.shape[0] > 1:
            decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)]
            decoded = torch.cat(decoded_slices)
        else:
            decoded = self._decode(z).sample

        if not return_dict:
            return (decoded,)
        return DecoderOutput(sample=decoded)

    def blend_v(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-2], b.shape[-2], blend_extent)
        for y in range(blend_extent):
            b[:, :, :, y, :] = a[:, :, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, :, y, :] * (
                y / blend_extent
            )
        return b

    def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
        blend_extent = min(a.shape[-1], b.shape[-1], blend_extent)
        for x in range(blend_extent):
            b[:, :, :, :, x] = a[:, :, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, :, x] * (
                x / blend_extent
            )
        return b

    def tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
        r"""Encode a batch of images using a tiled encoder.

        Args:
            x (`torch.Tensor`): Input batch of videos.

        Returns:
            `torch.Tensor`:
                The latent representation of the encoded videos.
        """
        _, _, num_frames, height, width = x.shape
        latent_height = height // self.spatial_compression_ratio
        latent_width = width // self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = tile_latent_min_height - tile_latent_stride_height
        blend_width = tile_latent_min_width - tile_latent_stride_width

        # Split x into overlapping tiles and encode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, self.tile_sample_stride_height):
            row = []
            for j in range(0, width, self.tile_sample_stride_width):
                self.clear_cache()
                time = []
                frame_range = 1 + (num_frames - 1) // 4
                for k in range(frame_range):
                    self._enc_conv_idx = [0]
                    if k == 0:
                        tile = x[:, :, :1, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
                    else:
                        tile = x[
                            :,
                            :,
                            1 + 4 * (k - 1) : 1 + 4 * k,
                            i : i + self.tile_sample_min_height,
                            j : j + self.tile_sample_min_width,
                        ]
                    tile = self.encoder(tile, feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
                    tile = self.quant_conv(tile)
                    time.append(tile)
                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, :tile_latent_stride_height, :tile_latent_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        enc = torch.cat(result_rows, dim=3)[:, :, :, :latent_height, :latent_width]
        return enc

    def tiled_decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
        r"""
        Decode a batch of images using a tiled decoder.

        Args:
            z (`torch.Tensor`): Input batch of latent vectors.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.

        Returns:
            [`~models.vae.DecoderOutput`] or `tuple`:
                If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
                returned.
        """
        _, _, num_frames, height, width = z.shape
        sample_height = height * self.spatial_compression_ratio
        sample_width = width * self.spatial_compression_ratio

        tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
        tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
        tile_latent_stride_height = self.tile_sample_stride_height // self.spatial_compression_ratio
        tile_latent_stride_width = self.tile_sample_stride_width // self.spatial_compression_ratio

        blend_height = self.tile_sample_min_height - self.tile_sample_stride_height
        blend_width = self.tile_sample_min_width - self.tile_sample_stride_width

        # Split z into overlapping tiles and decode them separately.
        # The tiles have an overlap to avoid seams between tiles.
        rows = []
        for i in range(0, height, tile_latent_stride_height):
            row = []
            for j in range(0, width, tile_latent_stride_width):
                self.clear_cache()
                time = []
                for k in range(num_frames):
                    self._conv_idx = [0]
                    tile = z[:, :, k : k + 1, i : i + tile_latent_min_height, j : j + tile_latent_min_width]
                    tile = self.post_quant_conv(tile)
                    decoded = self.decoder(tile, feat_cache=self._feat_map, feat_idx=self._conv_idx)
                    time.append(decoded)
                row.append(torch.cat(time, dim=2))
            rows.append(row)
        self.clear_cache()

        result_rows = []
        for i, row in enumerate(rows):
            result_row = []
            for j, tile in enumerate(row):
                # blend the above tile and the left tile
                # to the current tile and add the current tile to the result row
                if i > 0:
                    tile = self.blend_v(rows[i - 1][j], tile, blend_height)
                if j > 0:
                    tile = self.blend_h(row[j - 1], tile, blend_width)
                result_row.append(tile[:, :, :, : self.tile_sample_stride_height, : self.tile_sample_stride_width])
            result_rows.append(torch.cat(result_row, dim=-1))

        dec = torch.cat(result_rows, dim=3)[:, :, :, :sample_height, :sample_width]

        if not return_dict:
            return (dec,)
        return DecoderOutput(sample=dec)

    def forward(
        self,
        sample: torch.Tensor,
        sample_posterior: bool = False,
        return_dict: bool = True,
        generator: Optional[torch.Generator] = None,
    ) -> Union[DecoderOutput, torch.Tensor]:
        """
        Args:
            sample (`torch.Tensor`): Input sample.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
        """
        x = sample
        posterior = self.encode(x).latent_dist
        if sample_posterior:
            z = posterior.sample(generator=generator)
        else:
            z = posterior.mode()
        dec = self.decode(z, return_dict=return_dict)
        return dec