File size: 8,795 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import functools
from typing import Any, Dict, Optional, Tuple

import torch

from ..utils.logging import get_logger


logger = get_logger(__name__)  # pylint: disable=invalid-name


class ModelHook:
    r"""
    A hook that contains callbacks to be executed just before and after the forward method of a model.
    """

    _is_stateful = False

    def __init__(self):
        self.fn_ref: "HookFunctionReference" = None

    def initialize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
        r"""
        Hook that is executed when a model is initialized.

        Args:
            module (`torch.nn.Module`):
                The module attached to this hook.
        """
        return module

    def deinitalize_hook(self, module: torch.nn.Module) -> torch.nn.Module:
        r"""
        Hook that is executed when a model is deinitialized.

        Args:
            module (`torch.nn.Module`):
                The module attached to this hook.
        """
        return module

    def pre_forward(self, module: torch.nn.Module, *args, **kwargs) -> Tuple[Tuple[Any], Dict[str, Any]]:
        r"""
        Hook that is executed just before the forward method of the model.

        Args:
            module (`torch.nn.Module`):
                The module whose forward pass will be executed just after this event.
            args (`Tuple[Any]`):
                The positional arguments passed to the module.
            kwargs (`Dict[Str, Any]`):
                The keyword arguments passed to the module.
        Returns:
            `Tuple[Tuple[Any], Dict[Str, Any]]`:
                A tuple with the treated `args` and `kwargs`.
        """
        return args, kwargs

    def post_forward(self, module: torch.nn.Module, output: Any) -> Any:
        r"""
        Hook that is executed just after the forward method of the model.

        Args:
            module (`torch.nn.Module`):
                The module whose forward pass been executed just before this event.
            output (`Any`):
                The output of the module.
        Returns:
            `Any`: The processed `output`.
        """
        return output

    def detach_hook(self, module: torch.nn.Module) -> torch.nn.Module:
        r"""
        Hook that is executed when the hook is detached from a module.

        Args:
            module (`torch.nn.Module`):
                The module detached from this hook.
        """
        return module

    def reset_state(self, module: torch.nn.Module):
        if self._is_stateful:
            raise NotImplementedError("This hook is stateful and needs to implement the `reset_state` method.")
        return module


class HookFunctionReference:
    def __init__(self) -> None:
        """A container class that maintains mutable references to forward pass functions in a hook chain.

        Its mutable nature allows the hook system to modify the execution chain dynamically without rebuilding the
        entire forward pass structure.

        Attributes:
            pre_forward: A callable that processes inputs before the main forward pass.
            post_forward: A callable that processes outputs after the main forward pass.
            forward: The current forward function in the hook chain.
            original_forward: The original forward function, stored when a hook provides a custom new_forward.

        The class enables hook removal by allowing updates to the forward chain through reference modification rather
        than requiring reconstruction of the entire chain. When a hook is removed, only the relevant references need to
        be updated, preserving the execution order of the remaining hooks.
        """
        self.pre_forward = None
        self.post_forward = None
        self.forward = None
        self.original_forward = None


class HookRegistry:
    def __init__(self, module_ref: torch.nn.Module) -> None:
        super().__init__()

        self.hooks: Dict[str, ModelHook] = {}

        self._module_ref = module_ref
        self._hook_order = []
        self._fn_refs = []

    def register_hook(self, hook: ModelHook, name: str) -> None:
        if name in self.hooks.keys():
            raise ValueError(
                f"Hook with name {name} already exists in the registry. Please use a different name or "
                f"first remove the existing hook and then add a new one."
            )

        self._module_ref = hook.initialize_hook(self._module_ref)

        def create_new_forward(function_reference: HookFunctionReference):
            def new_forward(module, *args, **kwargs):
                args, kwargs = function_reference.pre_forward(module, *args, **kwargs)
                output = function_reference.forward(*args, **kwargs)
                return function_reference.post_forward(module, output)

            return new_forward

        forward = self._module_ref.forward

        fn_ref = HookFunctionReference()
        fn_ref.pre_forward = hook.pre_forward
        fn_ref.post_forward = hook.post_forward
        fn_ref.forward = forward

        if hasattr(hook, "new_forward"):
            fn_ref.original_forward = forward
            fn_ref.forward = functools.update_wrapper(
                functools.partial(hook.new_forward, self._module_ref), hook.new_forward
            )

        rewritten_forward = create_new_forward(fn_ref)
        self._module_ref.forward = functools.update_wrapper(
            functools.partial(rewritten_forward, self._module_ref), rewritten_forward
        )

        hook.fn_ref = fn_ref
        self.hooks[name] = hook
        self._hook_order.append(name)
        self._fn_refs.append(fn_ref)

    def get_hook(self, name: str) -> Optional[ModelHook]:
        return self.hooks.get(name, None)

    def remove_hook(self, name: str, recurse: bool = True) -> None:
        if name in self.hooks.keys():
            num_hooks = len(self._hook_order)
            hook = self.hooks[name]
            index = self._hook_order.index(name)
            fn_ref = self._fn_refs[index]

            old_forward = fn_ref.forward
            if fn_ref.original_forward is not None:
                old_forward = fn_ref.original_forward

            if index == num_hooks - 1:
                self._module_ref.forward = old_forward
            else:
                self._fn_refs[index + 1].forward = old_forward

            self._module_ref = hook.deinitalize_hook(self._module_ref)
            del self.hooks[name]
            self._hook_order.pop(index)
            self._fn_refs.pop(index)

        if recurse:
            for module_name, module in self._module_ref.named_modules():
                if module_name == "":
                    continue
                if hasattr(module, "_diffusers_hook"):
                    module._diffusers_hook.remove_hook(name, recurse=False)

    def reset_stateful_hooks(self, recurse: bool = True) -> None:
        for hook_name in reversed(self._hook_order):
            hook = self.hooks[hook_name]
            if hook._is_stateful:
                hook.reset_state(self._module_ref)

        if recurse:
            for module_name, module in self._module_ref.named_modules():
                if module_name == "":
                    continue
                if hasattr(module, "_diffusers_hook"):
                    module._diffusers_hook.reset_stateful_hooks(recurse=False)

    @classmethod
    def check_if_exists_or_initialize(cls, module: torch.nn.Module) -> "HookRegistry":
        if not hasattr(module, "_diffusers_hook"):
            module._diffusers_hook = cls(module)
        return module._diffusers_hook

    def __repr__(self) -> str:
        registry_repr = ""
        for i, hook_name in enumerate(self._hook_order):
            if self.hooks[hook_name].__class__.__repr__ is not object.__repr__:
                hook_repr = self.hooks[hook_name].__repr__()
            else:
                hook_repr = self.hooks[hook_name].__class__.__name__
            registry_repr += f"  ({i}) {hook_name} - {hook_repr}"
            if i < len(self._hook_order) - 1:
                registry_repr += "\n"
        return f"HookRegistry(\n{registry_repr}\n)"