File size: 46,131 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
# Copyright 2025 The EasyAnimate team and The HuggingFace Team.
# All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from typing import Callable, Dict, List, Optional, Union

import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from transformers import (
    BertModel,
    BertTokenizer,
    Qwen2Tokenizer,
    Qwen2VLForConditionalGeneration,
)

from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import VaeImageProcessor
from ...models import AutoencoderKLMagvit, EasyAnimateTransformer3DModel
from ...pipelines.pipeline_utils import DiffusionPipeline
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from .pipeline_output import EasyAnimatePipelineOutput


if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


EXAMPLE_DOC_STRING = """
    Examples:
        ```python
        >>> import torch
        >>> from diffusers import EasyAnimateControlPipeline
        >>> from diffusers.pipelines.easyanimate.pipeline_easyanimate_control import get_video_to_video_latent
        >>> from diffusers.utils import export_to_video, load_video

        >>> pipe = EasyAnimateControlPipeline.from_pretrained(
        ...     "alibaba-pai/EasyAnimateV5.1-12b-zh-Control-diffusers", torch_dtype=torch.bfloat16
        ... )
        >>> pipe.to("cuda")

        >>> control_video = load_video(
        ...     "https://huggingface.co/alibaba-pai/EasyAnimateV5.1-12b-zh-Control/blob/main/asset/pose.mp4"
        ... )
        >>> prompt = (
        ...     "In this sunlit outdoor garden, a beautiful woman is dressed in a knee-length, sleeveless white dress. "
        ...     "The hem of her dress gently sways with her graceful dance, much like a butterfly fluttering in the breeze. "
        ...     "Sunlight filters through the leaves, casting dappled shadows that highlight her soft features and clear eyes, "
        ...     "making her appear exceptionally elegant. It seems as if every movement she makes speaks of youth and vitality. "
        ...     "As she twirls on the grass, her dress flutters, as if the entire garden is rejoicing in her dance. "
        ...     "The colorful flowers around her sway in the gentle breeze, with roses, chrysanthemums, and lilies each "
        ...     "releasing their fragrances, creating a relaxed and joyful atmosphere."
        ... )
        >>> sample_size = (672, 384)
        >>> num_frames = 49

        >>> input_video, _, _ = get_video_to_video_latent(control_video, num_frames, sample_size)
        >>> video = pipe(
        ...     prompt,
        ...     num_frames=num_frames,
        ...     negative_prompt="Twisted body, limb deformities, text subtitles, comics, stillness, ugliness, errors, garbled text.",
        ...     height=sample_size[0],
        ...     width=sample_size[1],
        ...     control_video=input_video,
        ... ).frames[0]
        >>> export_to_video(video, "output.mp4", fps=8)
        ```
"""


def preprocess_image(image, sample_size):
    """
    Preprocess a single image (PIL.Image, numpy.ndarray, or torch.Tensor) to a resized tensor.
    """
    if isinstance(image, torch.Tensor):
        # If input is a tensor, assume it's in CHW format and resize using interpolation
        image = torch.nn.functional.interpolate(
            image.unsqueeze(0), size=sample_size, mode="bilinear", align_corners=False
        ).squeeze(0)
    elif isinstance(image, Image.Image):
        # If input is a PIL image, resize and convert to numpy array
        image = image.resize((sample_size[1], sample_size[0]))
        image = np.array(image)
    elif isinstance(image, np.ndarray):
        # If input is a numpy array, resize using PIL
        image = Image.fromarray(image).resize((sample_size[1], sample_size[0]))
        image = np.array(image)
    else:
        raise ValueError("Unsupported input type. Expected PIL.Image, numpy.ndarray, or torch.Tensor.")

    # Convert to tensor if not already
    if not isinstance(image, torch.Tensor):
        image = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0  # HWC -> CHW, normalize to [0, 1]

    return image


def get_video_to_video_latent(input_video, num_frames, sample_size, validation_video_mask=None, ref_image=None):
    if input_video is not None:
        # Convert each frame in the list to tensor
        input_video = [preprocess_image(frame, sample_size=sample_size) for frame in input_video]

        # Stack all frames into a single tensor (F, C, H, W)
        input_video = torch.stack(input_video)[:num_frames]

        # Add batch dimension (B, F, C, H, W)
        input_video = input_video.permute(1, 0, 2, 3).unsqueeze(0)

        if validation_video_mask is not None:
            # Handle mask input
            validation_video_mask = preprocess_image(validation_video_mask, size=sample_size)
            input_video_mask = torch.where(validation_video_mask < 240 / 255.0, 0.0, 255)

            # Adjust mask dimensions to match video
            input_video_mask = input_video_mask.unsqueeze(0).unsqueeze(-1).permute([3, 0, 1, 2]).unsqueeze(0)
            input_video_mask = torch.tile(input_video_mask, [1, 1, input_video.size()[2], 1, 1])
            input_video_mask = input_video_mask.to(input_video.device, input_video.dtype)
        else:
            input_video_mask = torch.zeros_like(input_video[:, :1])
            input_video_mask[:, :, :] = 255
    else:
        input_video, input_video_mask = None, None

    if ref_image is not None:
        # Convert reference image to tensor
        ref_image = preprocess_image(ref_image, size=sample_size)
        ref_image = ref_image.permute(1, 0, 2, 3).unsqueeze(0)  # Add batch dimension (B, C, H, W)
    else:
        ref_image = None

    return input_video, input_video_mask, ref_image


# Similar to diffusers.pipelines.hunyuandit.pipeline_hunyuandit.get_resize_crop_region_for_grid
def get_resize_crop_region_for_grid(src, tgt_width, tgt_height):
    tw = tgt_width
    th = tgt_height
    h, w = src
    r = h / w
    if r > (th / tw):
        resize_height = th
        resize_width = int(round(th / h * w))
    else:
        resize_width = tw
        resize_height = int(round(tw / w * h))

    crop_top = int(round((th - resize_height) / 2.0))
    crop_left = int(round((tw - resize_width) / 2.0))

    return (crop_top, crop_left), (crop_top + resize_height, crop_left + resize_width)


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    r"""
    Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on
    Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are
    Flawed](https://huggingface.co/papers/2305.08891).

    Args:
        noise_cfg (`torch.Tensor`):
            The predicted noise tensor for the guided diffusion process.
        noise_pred_text (`torch.Tensor`):
            The predicted noise tensor for the text-guided diffusion process.
        guidance_rescale (`float`, *optional*, defaults to 0.0):
            A rescale factor applied to the noise predictions.

    Returns:
        noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.
    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg


# Resize mask information in magvit
def resize_mask(mask, latent, process_first_frame_only=True):
    latent_size = latent.size()

    if process_first_frame_only:
        target_size = list(latent_size[2:])
        target_size[0] = 1
        first_frame_resized = F.interpolate(
            mask[:, :, 0:1, :, :], size=target_size, mode="trilinear", align_corners=False
        )

        target_size = list(latent_size[2:])
        target_size[0] = target_size[0] - 1
        if target_size[0] != 0:
            remaining_frames_resized = F.interpolate(
                mask[:, :, 1:, :, :], size=target_size, mode="trilinear", align_corners=False
            )
            resized_mask = torch.cat([first_frame_resized, remaining_frames_resized], dim=2)
        else:
            resized_mask = first_frame_resized
    else:
        target_size = list(latent_size[2:])
        resized_mask = F.interpolate(mask, size=target_size, mode="trilinear", align_corners=False)
    return resized_mask


# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
def retrieve_timesteps(
    scheduler,
    num_inference_steps: Optional[int] = None,
    device: Optional[Union[str, torch.device]] = None,
    timesteps: Optional[List[int]] = None,
    sigmas: Optional[List[float]] = None,
    **kwargs,
):
    r"""
    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.

    Args:
        scheduler (`SchedulerMixin`):
            The scheduler to get timesteps from.
        num_inference_steps (`int`):
            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
            must be `None`.
        device (`str` or `torch.device`, *optional*):
            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        timesteps (`List[int]`, *optional*):
            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
            `num_inference_steps` and `sigmas` must be `None`.
        sigmas (`List[float]`, *optional*):
            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
            `num_inference_steps` and `timesteps` must be `None`.

    Returns:
        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
        second element is the number of inference steps.
    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


class EasyAnimateControlPipeline(DiffusionPipeline):
    r"""
    Pipeline for text-to-video generation using EasyAnimate.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    EasyAnimate uses one text encoder [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.

    Args:
        vae ([`AutoencoderKLMagvit`]):
            Variational Auto-Encoder (VAE) Model to encode and decode video to and from latent representations.
        text_encoder (Optional[`~transformers.Qwen2VLForConditionalGeneration`, `~transformers.BertModel`]):
            EasyAnimate uses [qwen2 vl](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct) in V5.1.
        tokenizer (Optional[`~transformers.Qwen2Tokenizer`, `~transformers.BertTokenizer`]):
            A `Qwen2Tokenizer` or `BertTokenizer` to tokenize text.
        transformer ([`EasyAnimateTransformer3DModel`]):
            The EasyAnimate model designed by EasyAnimate Team.
        scheduler ([`FlowMatchEulerDiscreteScheduler`]):
            A scheduler to be used in combination with EasyAnimate to denoise the encoded image latents.
    """

    model_cpu_offload_seq = "text_encoder->transformer->vae"
    _callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

    def __init__(
        self,
        vae: AutoencoderKLMagvit,
        text_encoder: Union[Qwen2VLForConditionalGeneration, BertModel],
        tokenizer: Union[Qwen2Tokenizer, BertTokenizer],
        transformer: EasyAnimateTransformer3DModel,
        scheduler: FlowMatchEulerDiscreteScheduler,
    ):
        super().__init__()

        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            transformer=transformer,
            scheduler=scheduler,
        )

        self.enable_text_attention_mask = (
            self.transformer.config.enable_text_attention_mask
            if getattr(self, "transformer", None) is not None
            else True
        )
        self.vae_spatial_compression_ratio = (
            self.vae.spatial_compression_ratio if getattr(self, "vae", None) is not None else 8
        )
        self.vae_temporal_compression_ratio = (
            self.vae.temporal_compression_ratio if getattr(self, "vae", None) is not None else 4
        )
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)
        self.mask_processor = VaeImageProcessor(
            vae_scale_factor=self.vae_spatial_compression_ratio,
            do_normalize=False,
            do_binarize=True,
            do_convert_grayscale=True,
        )
        self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_compression_ratio)

    # Copied from diffusers.pipelines.easyanimate.pipeline_easyanimate.EasyAnimatePipeline.encode_prompt
    def encode_prompt(
        self,
        prompt: Union[str, List[str]],
        num_images_per_prompt: int = 1,
        do_classifier_free_guidance: bool = True,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        device: Optional[torch.device] = None,
        dtype: Optional[torch.dtype] = None,
        max_sequence_length: int = 256,
    ):
        r"""
        Encodes the prompt into text encoder hidden states.

        Args:
            prompt (`str` or `List[str]`, *optional*):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            dtype (`torch.dtype`):
                torch dtype
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. If not defined, one has to pass
                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
                less than `1`).
            prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
            prompt_attention_mask (`torch.Tensor`, *optional*):
                Attention mask for the prompt. Required when `prompt_embeds` is passed directly.
            negative_prompt_attention_mask (`torch.Tensor`, *optional*):
                Attention mask for the negative prompt. Required when `negative_prompt_embeds` is passed directly.
            max_sequence_length (`int`, *optional*): maximum sequence length to use for the prompt.
        """
        dtype = dtype or self.text_encoder.dtype
        device = device or self.text_encoder.device

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            if isinstance(prompt, str):
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": prompt}],
                    }
                ]
            else:
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": _prompt}],
                    }
                    for _prompt in prompt
                ]
            text = [
                self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
            ]

            text_inputs = self.tokenizer(
                text=text,
                padding="max_length",
                max_length=max_sequence_length,
                truncation=True,
                return_attention_mask=True,
                padding_side="right",
                return_tensors="pt",
            )
            text_inputs = text_inputs.to(self.text_encoder.device)

            text_input_ids = text_inputs.input_ids
            prompt_attention_mask = text_inputs.attention_mask
            if self.enable_text_attention_mask:
                # Inference: Generation of the output
                prompt_embeds = self.text_encoder(
                    input_ids=text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
                ).hidden_states[-2]
            else:
                raise ValueError("LLM needs attention_mask")
            prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)

        prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
        prompt_attention_mask = prompt_attention_mask.to(device=device)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            if negative_prompt is not None and isinstance(negative_prompt, str):
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": negative_prompt}],
                    }
                ]
            else:
                messages = [
                    {
                        "role": "user",
                        "content": [{"type": "text", "text": _negative_prompt}],
                    }
                    for _negative_prompt in negative_prompt
                ]
            text = [
                self.tokenizer.apply_chat_template([m], tokenize=False, add_generation_prompt=True) for m in messages
            ]

            text_inputs = self.tokenizer(
                text=text,
                padding="max_length",
                max_length=max_sequence_length,
                truncation=True,
                return_attention_mask=True,
                padding_side="right",
                return_tensors="pt",
            )
            text_inputs = text_inputs.to(self.text_encoder.device)

            text_input_ids = text_inputs.input_ids
            negative_prompt_attention_mask = text_inputs.attention_mask
            if self.enable_text_attention_mask:
                # Inference: Generation of the output
                negative_prompt_embeds = self.text_encoder(
                    input_ids=text_input_ids,
                    attention_mask=negative_prompt_attention_mask,
                    output_hidden_states=True,
                ).hidden_states[-2]
            else:
                raise ValueError("LLM needs attention_mask")
            negative_prompt_attention_mask = negative_prompt_attention_mask.repeat(num_images_per_prompt, 1)

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
            negative_prompt_attention_mask = negative_prompt_attention_mask.to(device=device)

        return prompt_embeds, negative_prompt_embeds, prompt_attention_mask, negative_prompt_attention_mask

    # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def check_inputs(
        self,
        prompt,
        height,
        width,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
        prompt_attention_mask=None,
        negative_prompt_attention_mask=None,
        callback_on_step_end_tensor_inputs=None,
    ):
        if height % 16 != 0 or width % 16 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 16 but are {height} and {width}.")

        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if prompt_embeds is not None and prompt_attention_mask is None:
            raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
            raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

    def prepare_latents(
        self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None
    ):
        if latents is not None:
            return latents.to(device=device, dtype=dtype)

        shape = (
            batch_size,
            num_channels_latents,
            (num_frames - 1) // self.vae_temporal_compression_ratio + 1,
            height // self.vae_spatial_compression_ratio,
            width // self.vae_spatial_compression_ratio,
        )

        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        # scale the initial noise by the standard deviation required by the scheduler
        if hasattr(self.scheduler, "init_noise_sigma"):
            latents = latents * self.scheduler.init_noise_sigma
        return latents

    def prepare_control_latents(
        self, control, control_image, batch_size, height, width, dtype, device, generator, do_classifier_free_guidance
    ):
        # resize the control to latents shape as we concatenate the control to the latents
        # we do that before converting to dtype to avoid breaking in case we're using cpu_offload
        # and half precision

        if control is not None:
            control = control.to(device=device, dtype=dtype)
            bs = 1
            new_control = []
            for i in range(0, control.shape[0], bs):
                control_bs = control[i : i + bs]
                control_bs = self.vae.encode(control_bs)[0]
                control_bs = control_bs.mode()
                new_control.append(control_bs)
            control = torch.cat(new_control, dim=0)
            control = control * self.vae.config.scaling_factor

        if control_image is not None:
            control_image = control_image.to(device=device, dtype=dtype)
            bs = 1
            new_control_pixel_values = []
            for i in range(0, control_image.shape[0], bs):
                control_pixel_values_bs = control_image[i : i + bs]
                control_pixel_values_bs = self.vae.encode(control_pixel_values_bs)[0]
                control_pixel_values_bs = control_pixel_values_bs.mode()
                new_control_pixel_values.append(control_pixel_values_bs)
            control_image_latents = torch.cat(new_control_pixel_values, dim=0)
            control_image_latents = control_image_latents * self.vae.config.scaling_factor
        else:
            control_image_latents = None

        return control, control_image_latents

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
    # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
    # corresponds to doing no classifier free guidance.
    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @torch.no_grad()
    @replace_example_docstring(EXAMPLE_DOC_STRING)
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        num_frames: Optional[int] = 49,
        height: Optional[int] = 512,
        width: Optional[int] = 512,
        control_video: Union[torch.FloatTensor] = None,
        control_camera_video: Union[torch.FloatTensor] = None,
        ref_image: Union[torch.FloatTensor] = None,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 5.0,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
        prompt_attention_mask: Optional[torch.Tensor] = None,
        negative_prompt_attention_mask: Optional[torch.Tensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback_on_step_end: Optional[
            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
        ] = None,
        callback_on_step_end_tensor_inputs: List[str] = ["latents"],
        guidance_rescale: float = 0.0,
        timesteps: Optional[List[int]] = None,
    ):
        r"""
        Generates images or video using the EasyAnimate pipeline based on the provided prompts.

        Examples:
            prompt (`str` or `List[str]`, *optional*):
                Text prompts to guide the image or video generation. If not provided, use `prompt_embeds` instead.
            num_frames (`int`, *optional*):
                Length of the generated video (in frames).
            height (`int`, *optional*):
                Height of the generated image in pixels.
            width (`int`, *optional*):
                Width of the generated image in pixels.
            num_inference_steps (`int`, *optional*, defaults to 50):
                Number of denoising steps during generation. More steps generally yield higher quality images but slow
                down inference.
            guidance_scale (`float`, *optional*, defaults to 5.0):
                Encourages the model to align outputs with prompts. A higher value may decrease image quality.
            negative_prompt (`str` or `List[str]`, *optional*):
                Prompts indicating what to exclude in generation. If not specified, use `negative_prompt_embeds`.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                Number of images to generate for each prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Applies to DDIM scheduling. Controlled by the eta parameter from the related literature.
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                A generator to ensure reproducibility in image generation.
            latents (`torch.Tensor`, *optional*):
                Predefined latent tensors to condition generation.
            prompt_embeds (`torch.Tensor`, *optional*):
                Text embeddings for the prompts. Overrides prompt string inputs for more flexibility.
            negative_prompt_embeds (`torch.Tensor`, *optional*):
                Embeddings for negative prompts. Overrides string inputs if defined.
            prompt_attention_mask (`torch.Tensor`, *optional*):
                Attention mask for the primary prompt embeddings.
            negative_prompt_attention_mask (`torch.Tensor`, *optional*):
                Attention mask for negative prompt embeddings.
            output_type (`str`, *optional*, defaults to "latent"):
                Format of the generated output, either as a PIL image or as a NumPy array.
            return_dict (`bool`, *optional*, defaults to `True`):
                If `True`, returns a structured output. Otherwise returns a simple tuple.
            callback_on_step_end (`Callable`, *optional*):
                Functions called at the end of each denoising step.
            callback_on_step_end_tensor_inputs (`List[str]`, *optional*):
                Tensor names to be included in callback function calls.
            guidance_rescale (`float`, *optional*, defaults to 0.0):
                Adjusts noise levels based on guidance scale.

        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
                otherwise a `tuple` is returned where the first element is a list with the generated images and the
                second element is a list of `bool`s indicating whether the corresponding generated image contains
                "not-safe-for-work" (nsfw) content.
        """

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. default height and width
        height = int((height // 16) * 16)
        width = int((width // 16) * 16)

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
            callback_on_step_end_tensor_inputs,
        )
        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        if self.text_encoder is not None:
            dtype = self.text_encoder.dtype
        else:
            dtype = self.transformer.dtype

        # 3. Encode input prompt
        (
            prompt_embeds,
            negative_prompt_embeds,
            prompt_attention_mask,
            negative_prompt_attention_mask,
        ) = self.encode_prompt(
            prompt=prompt,
            device=device,
            dtype=dtype,
            num_images_per_prompt=num_images_per_prompt,
            do_classifier_free_guidance=self.do_classifier_free_guidance,
            negative_prompt=negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            prompt_attention_mask=prompt_attention_mask,
            negative_prompt_attention_mask=negative_prompt_attention_mask,
            text_encoder_index=0,
        )

        # 4. Prepare timesteps
        if isinstance(self.scheduler, FlowMatchEulerDiscreteScheduler):
            timesteps, num_inference_steps = retrieve_timesteps(
                self.scheduler, num_inference_steps, device, timesteps, mu=1
            )
        else:
            timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
        timesteps = self.scheduler.timesteps

        # 5. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            num_frames,
            height,
            width,
            dtype,
            device,
            generator,
            latents,
        )

        if control_camera_video is not None:
            control_video_latents = resize_mask(control_camera_video, latents, process_first_frame_only=True)
            control_video_latents = control_video_latents * 6
            control_latents = (
                torch.cat([control_video_latents] * 2) if self.do_classifier_free_guidance else control_video_latents
            ).to(device, dtype)
        elif control_video is not None:
            batch_size, channels, num_frames, height_video, width_video = control_video.shape
            control_video = self.image_processor.preprocess(
                control_video.permute(0, 2, 1, 3, 4).reshape(
                    batch_size * num_frames, channels, height_video, width_video
                ),
                height=height,
                width=width,
            )
            control_video = control_video.to(dtype=torch.float32)
            control_video = control_video.reshape(batch_size, num_frames, channels, height, width).permute(
                0, 2, 1, 3, 4
            )
            control_video_latents = self.prepare_control_latents(
                None,
                control_video,
                batch_size,
                height,
                width,
                dtype,
                device,
                generator,
                self.do_classifier_free_guidance,
            )[1]
            control_latents = (
                torch.cat([control_video_latents] * 2) if self.do_classifier_free_guidance else control_video_latents
            ).to(device, dtype)
        else:
            control_video_latents = torch.zeros_like(latents).to(device, dtype)
            control_latents = (
                torch.cat([control_video_latents] * 2) if self.do_classifier_free_guidance else control_video_latents
            ).to(device, dtype)

        if ref_image is not None:
            batch_size, channels, num_frames, height_video, width_video = ref_image.shape
            ref_image = self.image_processor.preprocess(
                ref_image.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height_video, width_video),
                height=height,
                width=width,
            )
            ref_image = ref_image.to(dtype=torch.float32)
            ref_image = ref_image.reshape(batch_size, num_frames, channels, height, width).permute(0, 2, 1, 3, 4)

            ref_image_latents = self.prepare_control_latents(
                None,
                ref_image,
                batch_size,
                height,
                width,
                prompt_embeds.dtype,
                device,
                generator,
                self.do_classifier_free_guidance,
            )[1]

            ref_image_latents_conv_in = torch.zeros_like(latents)
            if latents.size()[2] != 1:
                ref_image_latents_conv_in[:, :, :1] = ref_image_latents
            ref_image_latents_conv_in = (
                torch.cat([ref_image_latents_conv_in] * 2)
                if self.do_classifier_free_guidance
                else ref_image_latents_conv_in
            ).to(device, dtype)
            control_latents = torch.cat([control_latents, ref_image_latents_conv_in], dim=1)
        else:
            ref_image_latents_conv_in = torch.zeros_like(latents)
            ref_image_latents_conv_in = (
                torch.cat([ref_image_latents_conv_in] * 2)
                if self.do_classifier_free_guidance
                else ref_image_latents_conv_in
            ).to(device, dtype)
            control_latents = torch.cat([control_latents, ref_image_latents_conv_in], dim=1)

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
            prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask])

        # To latents.device
        prompt_embeds = prompt_embeds.to(device=device)
        prompt_attention_mask = prompt_attention_mask.to(device=device)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                if hasattr(self.scheduler, "scale_model_input"):
                    latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # expand scalar t to 1-D tensor to match the 1st dim of latent_model_input
                t_expand = torch.tensor([t] * latent_model_input.shape[0], device=device).to(
                    dtype=latent_model_input.dtype
                )
                # predict the noise residual
                noise_pred = self.transformer(
                    latent_model_input,
                    t_expand,
                    encoder_hidden_states=prompt_embeds,
                    control_latents=control_latents,
                    return_dict=False,
                )[0]
                if noise_pred.size()[1] != self.vae.config.latent_channels:
                    noise_pred, _ = noise_pred.chunk(2, dim=1)

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and guidance_rescale > 0.0:
                    # Based on 3.4. in https://huggingface.co/papers/2305.08891
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()

                if XLA_AVAILABLE:
                    xm.mark_step()

        # Convert to tensor
        if not output_type == "latent":
            video = self.decode_latents(latents)
            video = self.video_processor.postprocess_video(video=video, output_type=output_type)
        else:
            video = latents

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (video,)

        return EasyAnimatePipelineOutput(frames=video)