File size: 12,223 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import gc
import unittest

import torch

from diffusers.models import ModelMixin
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.utils import get_logger
from diffusers.utils.import_utils import compare_versions
from diffusers.utils.testing_utils import (
    backend_empty_cache,
    backend_max_memory_allocated,
    backend_reset_peak_memory_stats,
    require_torch_accelerator,
    torch_device,
)


class DummyBlock(torch.nn.Module):
    def __init__(self, in_features: int, hidden_features: int, out_features: int) -> None:
        super().__init__()

        self.proj_in = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.proj_out = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.proj_in(x)
        x = self.activation(x)
        x = self.proj_out(x)
        return x


class DummyModel(ModelMixin):
    def __init__(self, in_features: int, hidden_features: int, out_features: int, num_layers: int) -> None:
        super().__init__()

        self.linear_1 = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.blocks = torch.nn.ModuleList(
            [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
        )
        self.linear_2 = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear_1(x)
        x = self.activation(x)
        for block in self.blocks:
            x = block(x)
        x = self.linear_2(x)
        return x


# This model implementation contains one type of block (single_blocks) instantiated before another type of block (double_blocks).
# The invocation order of these blocks, however, is first the double_blocks and then the single_blocks.
# With group offloading implementation before https://github.com/huggingface/diffusers/pull/11375, such a modeling implementation
# would result in a device mismatch error because of the assumptions made by the code. The failure case occurs when using:
#   offload_type="block_level", num_blocks_per_group=2, use_stream=True
# Post the linked PR, the implementation will work as expected.
class DummyModelWithMultipleBlocks(ModelMixin):
    def __init__(
        self, in_features: int, hidden_features: int, out_features: int, num_layers: int, num_single_layers: int
    ) -> None:
        super().__init__()

        self.linear_1 = torch.nn.Linear(in_features, hidden_features)
        self.activation = torch.nn.ReLU()
        self.single_blocks = torch.nn.ModuleList(
            [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_single_layers)]
        )
        self.double_blocks = torch.nn.ModuleList(
            [DummyBlock(hidden_features, hidden_features, hidden_features) for _ in range(num_layers)]
        )
        self.linear_2 = torch.nn.Linear(hidden_features, out_features)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.linear_1(x)
        x = self.activation(x)
        for block in self.double_blocks:
            x = block(x)
        for block in self.single_blocks:
            x = block(x)
        x = self.linear_2(x)
        return x


class DummyPipeline(DiffusionPipeline):
    model_cpu_offload_seq = "model"

    def __init__(self, model: torch.nn.Module) -> None:
        super().__init__()

        self.register_modules(model=model)

    def __call__(self, x: torch.Tensor) -> torch.Tensor:
        for _ in range(2):
            x = x + 0.1 * self.model(x)
        return x


@require_torch_accelerator
class GroupOffloadTests(unittest.TestCase):
    in_features = 64
    hidden_features = 256
    out_features = 64
    num_layers = 4

    def setUp(self):
        with torch.no_grad():
            self.model = self.get_model()
            self.input = torch.randn((4, self.in_features)).to(torch_device)

    def tearDown(self):
        super().tearDown()

        del self.model
        del self.input
        gc.collect()
        backend_empty_cache(torch_device)
        backend_reset_peak_memory_stats(torch_device)

    def get_model(self):
        torch.manual_seed(0)
        return DummyModel(
            in_features=self.in_features,
            hidden_features=self.hidden_features,
            out_features=self.out_features,
            num_layers=self.num_layers,
        )

    def test_offloading_forward_pass(self):
        @torch.no_grad()
        def run_forward(model):
            gc.collect()
            backend_empty_cache(torch_device)
            backend_reset_peak_memory_stats(torch_device)
            self.assertTrue(
                all(
                    module._diffusers_hook.get_hook("group_offloading") is not None
                    for module in model.modules()
                    if hasattr(module, "_diffusers_hook")
                )
            )
            model.eval()
            output = model(self.input)[0].cpu()
            max_memory_allocated = backend_max_memory_allocated(torch_device)
            return output, max_memory_allocated

        self.model.to(torch_device)
        output_without_group_offloading, mem_baseline = run_forward(self.model)
        self.model.to("cpu")

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        output_with_group_offloading1, mem1 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1)
        output_with_group_offloading2, mem2 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)
        output_with_group_offloading3, mem3 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="leaf_level")
        output_with_group_offloading4, mem4 = run_forward(model)

        model = self.get_model()
        model.enable_group_offload(torch_device, offload_type="leaf_level", use_stream=True)
        output_with_group_offloading5, mem5 = run_forward(model)

        # Precision assertions - offloading should not impact the output
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading3, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading4, atol=1e-5))
        self.assertTrue(torch.allclose(output_without_group_offloading, output_with_group_offloading5, atol=1e-5))

        # Memory assertions - offloading should reduce memory usage
        self.assertTrue(mem4 <= mem5 < mem2 <= mem3 < mem1 < mem_baseline)

    def test_warning_logged_if_group_offloaded_module_moved_to_accelerator(self):
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return
        self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        logger = get_logger("diffusers.models.modeling_utils")
        logger.setLevel("INFO")
        with self.assertLogs(logger, level="WARNING") as cm:
            self.model.to(torch_device)
        self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])

    def test_warning_logged_if_group_offloaded_pipe_moved_to_accelerator(self):
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return
        pipe = DummyPipeline(self.model)
        self.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        logger = get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel("INFO")
        with self.assertLogs(logger, level="WARNING") as cm:
            pipe.to(torch_device)
        self.assertIn(f"The module '{self.model.__class__.__name__}' is group offloaded", cm.output[0])

    def test_error_raised_if_streams_used_and_no_accelerator_device(self):
        torch_accelerator_module = getattr(torch, torch_device, torch.cuda)
        original_is_available = torch_accelerator_module.is_available
        torch_accelerator_module.is_available = lambda: False
        with self.assertRaises(ValueError):
            self.model.enable_group_offload(
                onload_device=torch.device(torch_device), offload_type="leaf_level", use_stream=True
            )
        torch_accelerator_module.is_available = original_is_available

    def test_error_raised_if_supports_group_offloading_false(self):
        self.model._supports_group_offloading = False
        with self.assertRaisesRegex(ValueError, "does not support group offloading"):
            self.model.enable_group_offload(onload_device=torch.device(torch_device))

    def test_error_raised_if_model_offloading_applied_on_group_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
            pipe.enable_model_cpu_offload()

    def test_error_raised_if_sequential_offloading_applied_on_group_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)
        with self.assertRaisesRegex(ValueError, "You are trying to apply model/sequential CPU offloading"):
            pipe.enable_sequential_cpu_offload()

    def test_error_raised_if_group_offloading_applied_on_model_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.enable_model_cpu_offload()
        with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
            pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)

    def test_error_raised_if_group_offloading_applied_on_sequential_offloaded_module(self):
        pipe = DummyPipeline(self.model)
        pipe.enable_sequential_cpu_offload()
        with self.assertRaisesRegex(ValueError, "Cannot apply group offloading"):
            pipe.model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=3)

    def test_block_level_stream_with_invocation_order_different_from_initialization_order(self):
        if torch.device(torch_device).type not in ["cuda", "xpu"]:
            return
        model = DummyModelWithMultipleBlocks(
            in_features=self.in_features,
            hidden_features=self.hidden_features,
            out_features=self.out_features,
            num_layers=self.num_layers,
            num_single_layers=self.num_layers + 1,
        )
        model.enable_group_offload(torch_device, offload_type="block_level", num_blocks_per_group=1, use_stream=True)

        context = contextlib.nullcontext()
        if compare_versions("diffusers", "<=", "0.33.0"):
            # Will raise a device mismatch RuntimeError mentioning weights are on CPU but input is on device
            context = self.assertRaisesRegex(RuntimeError, "Expected all tensors to be on the same device")

        with context:
            model(self.input)