Spaces:
Running
on
Zero
Running
on
Zero
File size: 32,145 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 |
<!--Copyright 2024 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
-->
# IP-Adapter
[IP-Adapter](https://huggingface.co/papers/2308.06721) is a lightweight adapter designed to integrate image-based guidance with text-to-image diffusion models. The adapter uses an image encoder to extract image features that are passed to the newly added cross-attention layers in the UNet and fine-tuned. The original UNet model and the existing cross-attention layers corresponding to text features is frozen. Decoupling the cross-attention for image and text features enables more fine-grained and controllable generation.
IP-Adapter files are typically ~100MBs because they only contain the image embeddings. This means you need to load a model first, and then load the IP-Adapter with [`~loaders.IPAdapterMixin.load_ip_adapter`].
> [!TIP]
> IP-Adapters are available to many models such as [Flux](../api/pipelines/flux#ip-adapter) and [Stable Diffusion 3](../api/pipelines/stable_diffusion/stable_diffusion_3), and more. The examples in this guide use Stable Diffusion and Stable Diffusion XL.
Use the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] parameter to scale the influence of the IP-Adapter during generation. A value of `1.0` means the model is only conditioned on the image prompt, and `0.5` typically produces balanced results between the text and image prompt.
```py
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.8)
```
Pass an image to `ip_adapter_image` along with a text prompt to generate an image.
```py
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png")
pipeline(
prompt="a polar bear sitting in a chair drinking a milkshake",
ip_adapter_image=image,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner.png" width="400" alt="IP-Adapter image"/>
<figcaption style="text-align: center;">IP-Adapter image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_diner_2.png" width="400" alt="generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
Take a look at the examples below to learn how to use IP-Adapter for other tasks.
<hfoptions id="usage">
<hfoption id="image-to-image">
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.8)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png")
ip_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png")
pipeline(
prompt="best quality, high quality",
image=image,
ip_adapter_image=ip_image,
strength=0.5,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png" width="300" alt="input image"/>
<figcaption style="text-align: center;">input image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png" width="300" alt="IP-Adapter image"/>
<figcaption style="text-align: center;">IP-Adapter image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_3.png" width="300" alt="generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
</hfoption>
<hfoption id="inpainting">
```py
import torch
from diffusers import AutoPipelineForImage2Image
from diffusers.utils import load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.6)
mask_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_mask.png")
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png")
ip_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png")
pipeline(
prompt="a cute gummy bear waving",
image=image,
mask_image=mask_image,
ip_adapter_image=ip_image,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_bear_1.png" width="300" alt="input image"/>
<figcaption style="text-align: center;">input image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_gummy.png" width="300" alt="IP-Adapter image"/>
<figcaption style="text-align: center;">IP-Adapter image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png" width="300" alt="generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
</hfoption>
<hfoption id="video">
The [`~DiffusionPipeline.enable_model_cpu_offload`] method is useful for reducing memory and it should be enabled **after** the IP-Adapter is loaded. Otherwise, the IP-Adapter's image encoder is also offloaded to the CPU and returns an error.
```py
import torch
from diffusers import AnimateDiffPipeline, DDIMScheduler, MotionAdapter
from diffusers.utils import export_to_gif
from diffusers.utils import load_image
adapter = MotionAdapter.from_pretrained(
"guoyww/animatediff-motion-adapter-v1-5-2",
torch_dtype=torch.float16
)
pipeline = AnimateDiffPipeline.from_pretrained(
"emilianJR/epiCRealism",
motion_adapter=adapter,
torch_dtype=torch.float16
)
scheduler = DDIMScheduler.from_pretrained(
"emilianJR/epiCRealism",
subfolder="scheduler",
clip_sample=False,
timestep_spacing="linspace",
beta_schedule="linear",
steps_offset=1,
)
pipeline.scheduler = scheduler
pipeline.enable_vae_slicing()
pipeline.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter_sd15.bin")
pipeline.enable_model_cpu_offload()
ip_adapter_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png")
pipeline(
prompt="A cute gummy bear waving",
negative_prompt="bad quality, worse quality, low resolution",
ip_adapter_image=ip_adapter_image,
num_frames=16,
guidance_scale=7.5,
num_inference_steps=50,
).frames[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_inpaint.png" width="400" alt="IP-Adapter image"/>
<figcaption style="text-align: center;">IP-Adapter image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/gummy_bear.gif" width="400" alt="generated video"/>
<figcaption style="text-align: center;">generated video</figcaption>
</figure>
</div>
</hfoption>
</hfoptions>
## Model variants
There are two variants of IP-Adapter, Plus and FaceID. The Plus variant uses patch embeddings and the ViT-H image encoder. FaceID variant uses face embeddings generated from InsightFace.
<hfoptions id="ipadapter-variants">
<hfoption id="IP-Adapter Plus">
```py
import torch
from transformers import CLIPVisionModelWithProjection, AutoPipelineForText2Image
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
image_encoder=image_encoder,
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter-plus_sdxl_vit-h.safetensors"
)
```
</hfoption>
<hfoption id="IP-Adapter FaceID">
```py
import torch
from transformers import AutoPipelineForText2Image
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter-FaceID",
subfolder=None,
weight_name="ip-adapter-faceid_sdxl.bin",
image_encoder_folder=None
)
```
To use a IP-Adapter FaceID Plus model, load the CLIP image encoder as well as [`~transformers.CLIPVisionModelWithProjection`].
```py
from transformers import AutoPipelineForText2Image, CLIPVisionModelWithProjection
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K",
torch_dtype=torch.float16,
)
pipeline = AutoPipelineForText2Image.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
image_encoder=image_encoder,
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter-FaceID",
subfolder=None,
weight_name="ip-adapter-faceid-plus_sd15.bin"
)
```
</hfoption>
</hfoptions>
## Image embeddings
The `prepare_ip_adapter_image_embeds` generates image embeddings you can reuse if you're running the pipeline multiple times because you have more than one image. Loading and encoding multiple images each time you use the pipeline can be inefficient. Precomputing the image embeddings ahead of time, saving them to disk, and loading them when you need them is more efficient.
```py
import torch
from diffusers import AutoPipelineForText2Image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
image_embeds = pipeline.prepare_ip_adapter_image_embeds(
ip_adapter_image=image,
ip_adapter_image_embeds=None,
device="cuda",
num_images_per_prompt=1,
do_classifier_free_guidance=True,
)
torch.save(image_embeds, "image_embeds.ipadpt")
```
Reload the image embeddings by passing them to the `ip_adapter_image_embeds` parameter. Set `image_encoder_folder` to `None` because you don't need the image encoder anymore to generate the image embeddings.
> [!TIP]
> You can also load image embeddings from other sources such as ComfyUI.
```py
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
image_encoder_folder=None,
weight_name="ip-adapter_sdxl.bin"
)
pipeline.set_ip_adapter_scale(0.8)
image_embeds = torch.load("image_embeds.ipadpt")
pipeline(
prompt="a polar bear sitting in a chair drinking a milkshake",
ip_adapter_image_embeds=image_embeds,
negative_prompt="deformed, ugly, wrong proportion, low res, bad anatomy, worst quality, low quality",
num_inference_steps=100,
generator=generator,
).images[0]
```
## Masking
Binary masking enables assigning an IP-Adapter image to a specific area of the output image, making it useful for composing multiple IP-Adapter images. Each IP-Adapter image requires a binary mask.
Load the [`~image_processor.IPAdapterMaskProcessor`] to preprocess the image masks. For the best results, provide the output `height` and `width` to ensure masks with different aspect ratios are appropriately sized. If the input masks already match the aspect ratio of the generated image, you don't need to set the `height` and `width`.
```py
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.image_processor import IPAdapterMaskProcessor
from diffusers.utils import load_image
pipeline = AutoPipelineForImage2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
mask1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask1.png")
mask2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_mask2.png")
processor = IPAdapterMaskProcessor()
masks = processor.preprocess([mask1, mask2], height=1024, width=1024)
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask1.png" width="200" alt="mask 1"/>
<figcaption style="text-align: center;">mask 1</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_mask2.png" width="200" alt="mask 2"/>
<figcaption style="text-align: center;">mask 2</figcaption>
</figure>
</div>
Provide both the IP-Adapter images and their scales as a list. Pass the preprocessed masks to `cross_attention_kwargs` in the pipeline.
```py
face_image1 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl1.png")
face_image2 = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl2.png")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=["ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([[0.7, 0.7]])
ip_images = [[face_image1, face_image2]]
masks = [masks.reshape(1, masks.shape[0], masks.shape[2], masks.shape[3])]
pipeline(
prompt="2 girls",
ip_adapter_image=ip_images,
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
cross_attention_kwargs={"ip_adapter_masks": masks}
).images[0]
```
<div style="display: flex; flex-direction: column; gap: 10px;">
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl1.png" width="400" alt="IP-Adapter image 1"/>
<figcaption style="text-align: center;">IP-Adapter image 1</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_mask_girl2.png" width="400" alt="IP-Adapter image 2"/>
<figcaption style="text-align: center;">IP-Adapter image 2</figcaption>
</figure>
</div>
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_attention_mask_result_seed_0.png" width="400" alt="Generated image with mask"/>
<figcaption style="text-align: center;">generated with mask</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_no_attention_mask_result_seed_0.png" width="400" alt="Generated image without mask"/>
<figcaption style="text-align: center;">generated without mask</figcaption>
</figure>
</div>
</div>
## Applications
The section below covers some popular applications of IP-Adapter.
### Face models
Face generation and preserving its details can be challenging. To help generate more accurate faces, there are checkpoints specifically conditioned on images of cropped faces. You can find the face models in the [h94/IP-Adapter](https://huggingface.co/h94/IP-Adapter) repository or the [h94/IP-Adapter-FaceID](https://huggingface.co/h94/IP-Adapter-FaceID) repository. The FaceID checkpoints use the FaceID embeddings from [InsightFace](https://github.com/deepinsight/insightface) instead of CLIP image embeddings.
We recommend using the [`DDIMScheduler`] or [`EulerDiscreteScheduler`] for face models.
<hfoptions id="usage">
<hfoption id="h94/IP-Adapter">
```py
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
pipeline = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name="ip-adapter-full-face_sd15.bin"
)
pipeline.set_ip_adapter_scale(0.5)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein_base.png")
pipeline(
prompt="A photo of Einstein as a chef, wearing an apron, cooking in a French restaurant",
ip_adapter_image=image,
negative_prompt="lowres, bad anatomy, worst quality, low quality",
num_inference_steps=100,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein_base.png" width="400" alt="IP-Adapter image"/>
<figcaption style="text-align: center;">IP-Adapter image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_einstein.png" width="400" alt="generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
</hfoption>
<hfoption id="h94/IP-Adapter-FaceID">
For FaceID models, extract the face embeddings and pass them as a list of tensors to `ip_adapter_image_embeds`.
```py
# pip install insightface
import torch
from diffusers import StableDiffusionPipeline, DDIMScheduler
from diffusers.utils import load_image
from insightface.app import FaceAnalysis
pipeline = StableDiffusionPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
torch_dtype=torch.float16,
).to("cuda")
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
"h94/IP-Adapter-FaceID",
subfolder=None,
weight_name="ip-adapter-faceid_sd15.bin",
image_encoder_folder=None
)
pipeline.set_ip_adapter_scale(0.6)
image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_mask_girl1.png")
ref_images_embeds = []
app = FaceAnalysis(name="buffalo_l", providers=['CUDAExecutionProvider', 'CPUExecutionProvider'])
app.prepare(ctx_id=0, det_size=(640, 640))
image = cv2.cvtColor(np.asarray(image), cv2.COLOR_BGR2RGB)
faces = app.get(image)
image = torch.from_numpy(faces[0].normed_embedding)
ref_images_embeds.append(image.unsqueeze(0))
ref_images_embeds = torch.stack(ref_images_embeds, dim=0).unsqueeze(0)
neg_ref_images_embeds = torch.zeros_like(ref_images_embeds)
id_embeds = torch.cat([neg_ref_images_embeds, ref_images_embeds]).to(dtype=torch.float16, device="cuda")
pipeline(
prompt="A photo of a girl",
ip_adapter_image_embeds=[id_embeds],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
).images[0]
```
The IP-Adapter FaceID Plus and Plus v2 models require CLIP image embeddings. Prepare the face embeddings and then extract and pass the CLIP embeddings to the hidden image projection layers.
```py
clip_embeds = pipeline.prepare_ip_adapter_image_embeds(
[ip_adapter_images], None, torch.device("cuda"), num_images, True)[0]
pipeline.unet.encoder_hid_proj.image_projection_layers[0].clip_embeds = clip_embeds.to(dtype=torch.float16)
# set to True if using IP-Adapter FaceID Plus v2
pipeline.unet.encoder_hid_proj.image_projection_layers[0].shortcut = False
```
</hfoption>
</hfoptions>
### Multiple IP-Adapters
Combine multiple IP-Adapters to generate images in more diverse styles. For example, you can use IP-Adapter Face to generate consistent faces and characters and IP-Adapter Plus to generate those faces in specific styles.
Load an image encoder with [`~transformers.CLIPVisionModelWithProjection`].
```py
import torch
from diffusers import AutoPipelineForText2Image, DDIMScheduler
from transformers import CLIPVisionModelWithProjection
from diffusers.utils import load_image
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
"h94/IP-Adapter",
subfolder="models/image_encoder",
torch_dtype=torch.float16,
)
```
Load a base model, scheduler and the following IP-Adapters.
- [ip-adapter-plus_sdxl_vit-h](https://huggingface.co/h94/IP-Adapter#ip-adapter-for-sdxl-10) uses patch embeddings and a ViT-H image encoder
- [ip-adapter-plus-face_sdxl_vit-h](https://huggingface.co/h94/IP-Adapter#ip-adapter-for-sdxl-10) uses patch embeddings and a ViT-H image encoder but it is conditioned on images of cropped faces
```py
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16,
image_encoder=image_encoder,
)
pipeline.scheduler = DDIMScheduler.from_config(pipeline.scheduler.config)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name=["ip-adapter-plus_sdxl_vit-h.safetensors", "ip-adapter-plus-face_sdxl_vit-h.safetensors"]
)
pipeline.set_ip_adapter_scale([0.7, 0.3])
# enable_model_cpu_offload to reduce memory usage
pipeline.enable_model_cpu_offload()
```
Load an image and a folder containing images of a certain style to apply.
```py
face_image = load_image("https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png")
style_folder = "https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/style_ziggy"
style_images = [load_image(f"{style_folder}/img{i}.png") for i in range(10)]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/women_input.png" width="400" alt="Face image"/>
<figcaption style="text-align: center;">face image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_style_grid.png" width="400" alt="Style images"/>
<figcaption style="text-align: center;">style images</figcaption>
</figure>
</div>
Pass style and face images as a list to `ip_adapter_image`.
```py
generator = torch.Generator(device="cpu").manual_seed(0)
pipeline(
prompt="wonderwoman",
ip_adapter_image=[style_images, face_image],
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
).images[0]
```
<div style="display: flex; justify-content: center;">
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ip_multi_out.png" width="400" alt="Generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
### Instant generation
[Latent Consistency Models (LCM)](../api/pipelines/latent_consistency_models) can generate images 4 steps or less, unlike other diffusion models which require a lot more steps, making it feel "instantaneous". IP-Adapters are compatible with LCM models to instantly generate images.
Load the IP-Adapter weights and load the LoRA weights with [`~loaders.StableDiffusionLoraLoaderMixin.load_lora_weights`].
```py
import torch
from diffusers import DiffusionPipeline, LCMScheduler
from diffusers.utils import load_image
pipeline = DiffusionPipeline.from_pretrained(
"sd-dreambooth-library/herge-style",
torch_dtype=torch.float16
)
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name="ip-adapter_sd15.bin"
)
pipeline.load_lora_weights("latent-consistency/lcm-lora-sdv1-5")
pipeline.scheduler = LCMScheduler.from_config(pipeline.scheduler.config)
# enable_model_cpu_offload to reduce memory usage
pipeline.enable_model_cpu_offload()
```
Try using a lower IP-Adapter scale to condition generation more on the style you want to apply and remember to use the special token in your prompt to trigger its generation.
```py
pipeline.set_ip_adapter_scale(0.4)
prompt = "herge_style woman in armor, best quality, high quality"
ip_adapter_image = load_image("https://user-images.githubusercontent.com/24734142/266492875-2d50d223-8475-44f0-a7c6-08b51cb53572.png")
pipeline(
prompt=prompt,
ip_adapter_image=ip_adapter_image,
num_inference_steps=4,
guidance_scale=1,
).images[0]
```
<div style="display: flex; justify-content: center;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/ip_adapter_herge.png" width="400" alt="Generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
### Structural control
For structural control, combine IP-Adapter with [ControlNet](../api/pipelines/controlnet) conditioned on depth maps, edge maps, pose estimations, and more.
The example below loads a [`ControlNetModel`] checkpoint conditioned on depth maps and combines it with a IP-Adapter.
```py
import torch
from diffusers.utils import load_image
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/control_v11f1p_sd15_depth",
torch_dtype=torch.float16
)
pipeline = StableDiffusionControlNetPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-v1-5",
controlnet=controlnet,
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="models",
weight_name="ip-adapter_sd15.bin"
)
```
Pass the depth map and IP-Adapter image to the pipeline.
```py
pipeline(
prompt="best quality, high quality",
image=depth_map,
ip_adapter_image=ip_adapter_image,
negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/statue.png" width="300" alt="IP-Adapter image"/>
<figcaption style="text-align: center;">IP-Adapter image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/depth.png" width="300" alt="Depth map"/>
<figcaption style="text-align: center;">depth map</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/ipa-controlnet-out.png" width="300" alt="Generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
### Style and layout control
For style and layout control, combine IP-Adapter with [InstantStyle](https://huggingface.co/papers/2404.02733). InstantStyle separates *style* (color, texture, overall feel) and *content* from each other. It only applies the style in style-specific blocks of the model to prevent it from distorting other areas of an image. This generates images with stronger and more consistent styles and better control over the layout.
The IP-Adapter is only activated for specific parts of the model. Use the [`~loaders.IPAdapterMixin.set_ip_adapter_scale`] method to scale the influence of the IP-Adapter in different layers. The example below activates the IP-Adapter in the second layer of the models down `block_2` and up `block_0`. Down `block_2` is where the IP-Adapter injects layout information and up `block_0` is where style is injected.
```py
import torch
from diffusers import AutoPipelineForText2Image
from diffusers.utils import load_image
pipeline = AutoPipelineForText2Image.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch.float16
).to("cuda")
pipeline.load_ip_adapter(
"h94/IP-Adapter",
subfolder="sdxl_models",
weight_name="ip-adapter_sdxl.bin"
)
scale = {
"down": {"block_2": [0.0, 1.0]},
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
```
Load the style image and generate an image.
```py
style_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg")
pipeline(
prompt="a cat, masterpiece, best quality, high quality",
ip_adapter_image=style_image,
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
guidance_scale=5,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" width="400" alt="Style image"/>
<figcaption style="text-align: center;">style image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_layout.png" width="400" alt="Generated image"/>
<figcaption style="text-align: center;">generated image</figcaption>
</figure>
</div>
You can also insert the IP-Adapter in all the model layers. This tends to generate images that focus more on the image prompt and may reduce the diversity of generated images. Only activate the IP-Adapter in up `block_0` or the style layer.
> [!TIP]
> You don't need to specify all the layers in the `scale` dictionary. Layers not included are set to 0, which means the IP-Adapter is disabled.
```py
scale = {
"up": {"block_0": [0.0, 1.0, 0.0]},
}
pipeline.set_ip_adapter_scale(scale)
pipeline(
prompt="a cat, masterpiece, best quality, high quality",
ip_adapter_image=style_image,
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry",
guidance_scale=5,
).images[0]
```
<div style="display: flex; gap: 10px; justify-content: space-around; align-items: flex-end;">
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_only.png" width="400" alt="Generated image (style only)"/>
<figcaption style="text-align: center;">style-layer generated image</figcaption>
</figure>
<figure>
<img src="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_ip_adapter.png" width="400" alt="Generated image (IP-Adapter only)"/>
<figcaption style="text-align: center;">all layers generated image</figcaption>
</figure>
</div> |