File size: 23,951 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, is_scipy_available, logging
from ..utils.torch_utils import randn_tensor
from .scheduling_utils import SchedulerMixin


if is_scipy_available():
    import scipy.stats

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
class FlowMatchLCMSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
    """

    prev_sample: torch.FloatTensor


class FlowMatchLCMScheduler(SchedulerMixin, ConfigMixin):
    """
    LCM scheduler for Flow Matching.

    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.

    Args:
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        shift (`float`, defaults to 1.0):
            The shift value for the timestep schedule.
        use_dynamic_shifting (`bool`, defaults to False):
            Whether to apply timestep shifting on-the-fly based on the image resolution.
        base_shift (`float`, defaults to 0.5):
            Value to stabilize image generation. Increasing `base_shift` reduces variation and image is more consistent
            with desired output.
        max_shift (`float`, defaults to 1.15):
            Value change allowed to latent vectors. Increasing `max_shift` encourages more variation and image may be
            more exaggerated or stylized.
        base_image_seq_len (`int`, defaults to 256):
            The base image sequence length.
        max_image_seq_len (`int`, defaults to 4096):
            The maximum image sequence length.
        invert_sigmas (`bool`, defaults to False):
            Whether to invert the sigmas.
        shift_terminal (`float`, defaults to None):
            The end value of the shifted timestep schedule.
        use_karras_sigmas (`bool`, defaults to False):
            Whether to use Karras sigmas for step sizes in the noise schedule during sampling.
        use_exponential_sigmas (`bool`, defaults to False):
            Whether to use exponential sigmas for step sizes in the noise schedule during sampling.
        use_beta_sigmas (`bool`, defaults to False):
            Whether to use beta sigmas for step sizes in the noise schedule during sampling.
        time_shift_type (`str`, defaults to "exponential"):
            The type of dynamic resolution-dependent timestep shifting to apply. Either "exponential" or "linear".
        scale_factors ('list', defaults to None)
            It defines how to scale the latents at which predictions are made.
        upscale_mode ('str', defaults to 'bicubic')
            Upscaling method, applied if scale-wise generation is considered
    """

    _compatibles = []
    order = 1

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        shift: float = 1.0,
        use_dynamic_shifting: bool = False,
        base_shift: Optional[float] = 0.5,
        max_shift: Optional[float] = 1.15,
        base_image_seq_len: Optional[int] = 256,
        max_image_seq_len: Optional[int] = 4096,
        invert_sigmas: bool = False,
        shift_terminal: Optional[float] = None,
        use_karras_sigmas: Optional[bool] = False,
        use_exponential_sigmas: Optional[bool] = False,
        use_beta_sigmas: Optional[bool] = False,
        time_shift_type: str = "exponential",
        scale_factors: Optional[List[float]] = None,
        upscale_mode: Optional[str] = "bicubic",
    ):
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
        if time_shift_type not in {"exponential", "linear"}:
            raise ValueError("`time_shift_type` must either be 'exponential' or 'linear'.")

        timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)

        sigmas = timesteps / num_train_timesteps
        if not use_dynamic_shifting:
            # when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
            sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)

        self.timesteps = sigmas * num_train_timesteps

        self._step_index = None
        self._begin_index = None

        self._shift = shift

        self._init_size = None
        self._scale_factors = scale_factors
        self._upscale_mode = upscale_mode

        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication
        self.sigma_min = self.sigmas[-1].item()
        self.sigma_max = self.sigmas[0].item()

    @property
    def shift(self):
        """
        The value used for shifting.
        """
        return self._shift

    @property
    def step_index(self):
        """
        The index counter for current timestep. It will increase 1 after each scheduler step.
        """
        return self._step_index

    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

    def set_shift(self, shift: float):
        self._shift = shift

    def set_scale_factors(self, scale_factors: list, upscale_mode):
        """
        Sets scale factors for a scale-wise generation regime.

        Args:
            scale_factors (`list`):
                The scale factors for each step
            upscale_mode (`str`):
                Upscaling method
        """
        self._scale_factors = scale_factors
        self._upscale_mode = upscale_mode

    def scale_noise(
        self,
        sample: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        noise: Optional[torch.FloatTensor] = None,
    ) -> torch.FloatTensor:
        """
        Forward process in flow-matching

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

        Returns:
            `torch.FloatTensor`:
                A scaled input sample.
        """
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)

        if sample.device.type == "mps" and torch.is_floating_point(timestep):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
            timestep = timestep.to(sample.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(sample.device)
            timestep = timestep.to(sample.device)

        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timestep.shape[0]
        else:
            # add noise is called before first denoising step to create initial latent(img2img)
            step_indices = [self.begin_index] * timestep.shape[0]

        sigma = sigmas[step_indices].flatten()
        while len(sigma.shape) < len(sample.shape):
            sigma = sigma.unsqueeze(-1)

        sample = sigma * noise + (1.0 - sigma) * sample

        return sample

    def _sigma_to_t(self, sigma):
        return sigma * self.config.num_train_timesteps

    def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
        if self.config.time_shift_type == "exponential":
            return self._time_shift_exponential(mu, sigma, t)
        elif self.config.time_shift_type == "linear":
            return self._time_shift_linear(mu, sigma, t)

    def stretch_shift_to_terminal(self, t: torch.Tensor) -> torch.Tensor:
        r"""
        Stretches and shifts the timestep schedule to ensure it terminates at the configured `shift_terminal` config
        value.

        Reference:
        https://github.com/Lightricks/LTX-Video/blob/a01a171f8fe3d99dce2728d60a73fecf4d4238ae/ltx_video/schedulers/rf.py#L51

        Args:
            t (`torch.Tensor`):
                A tensor of timesteps to be stretched and shifted.

        Returns:
            `torch.Tensor`:
                A tensor of adjusted timesteps such that the final value equals `self.config.shift_terminal`.
        """
        one_minus_z = 1 - t
        scale_factor = one_minus_z[-1] / (1 - self.config.shift_terminal)
        stretched_t = 1 - (one_minus_z / scale_factor)
        return stretched_t

    def set_timesteps(
        self,
        num_inference_steps: Optional[int] = None,
        device: Union[str, torch.device] = None,
        sigmas: Optional[List[float]] = None,
        mu: Optional[float] = None,
        timesteps: Optional[List[float]] = None,
    ):
        """
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).

        Args:
            num_inference_steps (`int`, *optional*):
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
            sigmas (`List[float]`, *optional*):
                Custom values for sigmas to be used for each diffusion step. If `None`, the sigmas are computed
                automatically.
            mu (`float`, *optional*):
                Determines the amount of shifting applied to sigmas when performing resolution-dependent timestep
                shifting.
            timesteps (`List[float]`, *optional*):
                Custom values for timesteps to be used for each diffusion step. If `None`, the timesteps are computed
                automatically.
        """
        if self.config.use_dynamic_shifting and mu is None:
            raise ValueError("`mu` must be passed when `use_dynamic_shifting` is set to be `True`")

        if sigmas is not None and timesteps is not None:
            if len(sigmas) != len(timesteps):
                raise ValueError("`sigmas` and `timesteps` should have the same length")

        if num_inference_steps is not None:
            if (sigmas is not None and len(sigmas) != num_inference_steps) or (
                timesteps is not None and len(timesteps) != num_inference_steps
            ):
                raise ValueError(
                    "`sigmas` and `timesteps` should have the same length as num_inference_steps, if `num_inference_steps` is provided"
                )
        else:
            num_inference_steps = len(sigmas) if sigmas is not None else len(timesteps)

        self.num_inference_steps = num_inference_steps

        # 1. Prepare default sigmas
        is_timesteps_provided = timesteps is not None

        if is_timesteps_provided:
            timesteps = np.array(timesteps).astype(np.float32)

        if sigmas is None:
            if timesteps is None:
                timesteps = np.linspace(
                    self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
                )
            sigmas = timesteps / self.config.num_train_timesteps
        else:
            sigmas = np.array(sigmas).astype(np.float32)
            num_inference_steps = len(sigmas)

        # 2. Perform timestep shifting. Either no shifting is applied, or resolution-dependent shifting of
        #    "exponential" or "linear" type is applied
        if self.config.use_dynamic_shifting:
            sigmas = self.time_shift(mu, 1.0, sigmas)
        else:
            sigmas = self.shift * sigmas / (1 + (self.shift - 1) * sigmas)

        # 3. If required, stretch the sigmas schedule to terminate at the configured `shift_terminal` value
        if self.config.shift_terminal:
            sigmas = self.stretch_shift_to_terminal(sigmas)

        # 4. If required, convert sigmas to one of karras, exponential, or beta sigma schedules
        if self.config.use_karras_sigmas:
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
        elif self.config.use_exponential_sigmas:
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
        elif self.config.use_beta_sigmas:
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)

        # 5. Convert sigmas and timesteps to tensors and move to specified device
        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
        if not is_timesteps_provided:
            timesteps = sigmas * self.config.num_train_timesteps
        else:
            timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32, device=device)

        # 6. Append the terminal sigma value.
        #    If a model requires inverted sigma schedule for denoising but timesteps without inversion, the
        #    `invert_sigmas` flag can be set to `True`. This case is only required in Mochi
        if self.config.invert_sigmas:
            sigmas = 1.0 - sigmas
            timesteps = sigmas * self.config.num_train_timesteps
            sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
        else:
            sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

        self.timesteps = timesteps
        self.sigmas = sigmas
        self._step_index = None
        self._begin_index = None

    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
        pos = 1 if len(indices) > 1 else 0

        return indices[pos].item()

    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index

    def step(
        self,
        model_output: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
        sample: torch.FloatTensor,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[FlowMatchLCMSchedulerOutput, Tuple]:
        """
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_flow_match_lcm.FlowMatchLCMSchedulerOutput`] or
                tuple.

        Returns:
            [`~schedulers.scheduling_flow_match_lcm.FlowMatchLCMSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_flow_match_lcm.FlowMatchLCMSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
        """

        if (
            isinstance(timestep, int)
            or isinstance(timestep, torch.IntTensor)
            or isinstance(timestep, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `FlowMatchLCMScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if self._scale_factors and self._upscale_mode and len(self.timesteps) != len(self._scale_factors) + 1:
            raise ValueError(
                "`_scale_factors` should have the same length as `timesteps` - 1, if `_scale_factors` are set."
            )

        if self._init_size is None or self.step_index is None:
            self._init_size = model_output.size()[2:]

        if self.step_index is None:
            self._init_step_index(timestep)

        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

        sigma = self.sigmas[self.step_index]
        sigma_next = self.sigmas[self.step_index + 1]
        x0_pred = sample - sigma * model_output

        if self._scale_factors and self._upscale_mode:
            if self._step_index < len(self._scale_factors):
                size = [round(self._scale_factors[self._step_index] * size) for size in self._init_size]
                x0_pred = torch.nn.functional.interpolate(x0_pred, size=size, mode=self._upscale_mode)

        noise = randn_tensor(x0_pred.shape, generator=generator, device=x0_pred.device, dtype=x0_pred.dtype)
        prev_sample = (1 - sigma_next) * x0_pred + sigma_next * noise

        # upon completion increase step index by one
        self._step_index += 1
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

        if not return_dict:
            return (prev_sample,)

        return FlowMatchLCMSchedulerOutput(prev_sample=prev_sample)

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
        return sigmas

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = np.array(
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

    def _time_shift_exponential(self, mu, sigma, t):
        return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)

    def _time_shift_linear(self, mu, sigma, t):
        return mu / (mu + (1 / t - 1) ** sigma)

    def __len__(self):
        return self.config.num_train_timesteps