File size: 4,686 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import gc
import unittest

import numpy as np
import torch
from transformers import AutoTokenizer, GemmaConfig, GemmaForCausalLM

from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    LuminaNextDiT2DModel,
    LuminaPipeline,
)
from diffusers.utils.testing_utils import (
    backend_empty_cache,
    numpy_cosine_similarity_distance,
    require_torch_accelerator,
    slow,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin


class LuminaPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = LuminaPipeline
    params = frozenset(
        [
            "prompt",
            "height",
            "width",
            "guidance_scale",
            "negative_prompt",
            "prompt_embeds",
            "negative_prompt_embeds",
        ]
    )
    batch_params = frozenset(["prompt", "negative_prompt"])

    supports_dduf = False
    test_layerwise_casting = True
    test_group_offloading = True

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = LuminaNextDiT2DModel(
            sample_size=4,
            patch_size=2,
            in_channels=4,
            hidden_size=4,
            num_layers=2,
            num_attention_heads=1,
            num_kv_heads=1,
            multiple_of=16,
            ffn_dim_multiplier=None,
            norm_eps=1e-5,
            learn_sigma=True,
            qk_norm=True,
            cross_attention_dim=8,
            scaling_factor=1.0,
        )
        torch.manual_seed(0)
        vae = AutoencoderKL()

        scheduler = FlowMatchEulerDiscreteScheduler()
        tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/dummy-gemma")

        torch.manual_seed(0)
        config = GemmaConfig(
            head_dim=2,
            hidden_size=8,
            intermediate_size=37,
            num_attention_heads=4,
            num_hidden_layers=2,
            num_key_value_heads=4,
        )
        text_encoder = GemmaForCausalLM(config)

        components = {
            "transformer": transformer.eval(),
            "vae": vae.eval(),
            "scheduler": scheduler,
            "text_encoder": text_encoder.eval(),
            "tokenizer": tokenizer,
        }
        return components

    def get_dummy_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
        }
        return inputs

    @unittest.skip("xformers attention processor does not exist for Lumina")
    def test_xformers_attention_forwardGenerator_pass(self):
        pass


@slow
@require_torch_accelerator
class LuminaPipelineSlowTests(unittest.TestCase):
    pipeline_class = LuminaPipeline
    repo_id = "Alpha-VLLM/Lumina-Next-SFT-diffusers"

    def setUp(self):
        super().setUp()
        gc.collect()
        backend_empty_cache(torch_device)

    def tearDown(self):
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def get_inputs(self, device, seed=0):
        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        return {
            "prompt": "A photo of a cat",
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "output_type": "np",
            "generator": generator,
        }

    def test_lumina_inference(self):
        pipe = self.pipeline_class.from_pretrained(self.repo_id, torch_dtype=torch.bfloat16)
        pipe.enable_model_cpu_offload(device=torch_device)

        inputs = self.get_inputs(torch_device)

        image = pipe(**inputs).images[0]
        image_slice = image[0, :10, :10]
        expected_slice = np.array(
            [
                [0.17773438, 0.18554688, 0.22070312],
                [0.046875, 0.06640625, 0.10351562],
                [0.0, 0.0, 0.02148438],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
                [0.0, 0.0, 0.0],
            ],
            dtype=np.float32,
        )

        max_diff = numpy_cosine_similarity_distance(expected_slice.flatten(), image_slice.flatten())

        assert max_diff < 1e-4